
AD-AI94 656 A COMPUTER PROGRAM PACKAGE FOR INTRODUCTORY 1/4
ONE-DIMENSIONAL DIGITAL SIGNAL PROCESSING APPLICATIONS
(U) NAVAL POSTGRADUATE SCHOOL MONTEREY CA F E HUDIK
MANLRSFI FR 88 F/G 12/5 NL

111111.0.0

1.2 111.8- .

NAVAL POSTGRADUATE SCHOOL
Monterey , California

01fC FILE COEY.I 'o STATES 4 .

SELECTE
JUN 30 IM8

DTHESIS
A CC4PIER PROGAM PACKAGE FOR UIl1DUCIRY
CN-IMEISCAL DIGITAL SIG24AL P1R)CSSII

APPLICATICNS

by

Frank E. Hukdik

March 1988

thesis Advisor: D. E. Kirk

APproved for public release; distribution is unJliiitea.

88 629 026

SE UR 1YASISF2O iN O F S. --A --- A 62 7
REPORT DOCUMENTATION PAGE

a. REPORT SECURITY CLASSIFiCAr!ON lb -RESTRICTIVE MARKINGS
UNCASS IFIED ______________________

2a. SECURITY CLASSiFICATiON AUTHORITY 3. DISTRIBUTIONI/AVAILABILITY OF REPORT
_______________________________APPROME FOR PUBLIC REL~EASE;

Zb. DECLASSIFICATION1 DOWNGRADING SCHEDULE DISTRIBUTION IS UNLIMITED.

i. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

.6. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

NVAL POSTGRADUATE SCHCOLi CODE 3 2 NAVAL POSTGRADUATE SCHOOL
6C. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (Crty, State, and ZIP Code)

MaT , CALIFORNIA 93943 MOVNTEREY, CALIFORNIA 93943

8.. NAME OF FUNDING iSPONSORING r8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT ICENTIFICATION NUMBER

ORGANIZATION j(if applicable)

8C. ADDRESS (City, Stare, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
PROGRAM IPROJECT ITASK IWORK UNIT
ELEMENT NO. NO. NO, ACCESSION NO.

11. TITLE (include Security Classification)

A 4CPUTER PF40CMM PACKAGE FOR INTROUCORY CE-DMIINAL DIGITAL SIGNAL PROCESSING3

12. PERSONAL AUTHOR(S)

13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT
MATRIS 'i~ s I FROM TO 1___1988, MARCH 1294

.16. SUPPLEMENTARY NOTATION THE VIEWS EXRESSED IN THIS THESIS AIRE THOS OF THE AUTHOR AND DO NOT
REFLECT THE OFFICIAL PCLICY OR POSITION OF THE DEPARTMET OF DEFENSE OR TEU.* S.

AG THMS; FREQUENCY RESCSE; FOURIER TRANSFORM; DIFFEREC

ITINA AGOITM HA CEAE PLTOS: OF TEM AS:PU A0ND OTT-M M Tr PE~ . T AW

RIMER EXISTEDFR OF THCORMPUWER 1)GRM USERL H ID l BESUAND 2) POTBILTY. WIO SOL ES

IN MIND, THE SOUCE CODE WAS WRITT.EN USING FORTRAN-77 AND COMPILE BY A COMMERIALLY
VAIIALEFORTRAN COMPILER SPECIFICALLY DESIGNED FOR PERSONAL CCMPUTERS. THE PLOTTING

I~RMUSES A FORTRAN'-C34PATIBLE GRAPHICS PACKAGE THAT IS ALSO COMERCIALLY AVAILABE. THE
~RM, OCE COMPILED, CAN BE DISTRIBUTED TO USERS WITHOUT THE RSQUIR1ET TO PURCHASE

ITHER A FORTRAN COMILER OR A GRAPHICS PACKAGE H9&-EVER, ACCESS TO A FORTRAN COMPILER
TH UTILITY OF THE PROGRAMS.

A. DISTRIBUTION /AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
UNCLASSI FIEDILINLI MITE D 0 SAME AS RPT. [3 OTIC USERS UNCLASSIFIED~

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (include Area Code) 2c. OFFICE SYMBOL

00 FORM 1473, 84 MAR 83 APR edition may be used until exhausted SECURITY CLASSIFICATION OF THIS PAGE
All other editions are obsolete U . ,.. 00 P1-igo" 96".4

Approved for public release; distribution is unlimited.

A Computer Program Package for Introductory One-Dimensional
Digital Signal Processing Applications

by

Frank Edward Hudik
Lieutenant, United States Navy

B.S., United States Naval Academy, 1979

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
March 1988

Author: & Z24/
Frank Edward Hudik

Approved by: __

D. E. Kirk, Thesis Advisor

R. D. Strum, Second Reader

John Powers, Chairman, Department of
Elect ical and Computer Engineering

Gordon E. Schacher
Dean of Science and Engineering

ii

ABSTRACT

A need exists for a set of computer programs that can be

used by students to solve elementary digital signal

processing problems using a personal computer. This project

involved the design and implementation of ten algorithms

that solve such problems and an additional algorithm that

creates plots of the various input and output sequences.

The two primary goals of the programs were: 1) user

friendliness and, 2) portability. With these goals in mind,

the source code was written using Fortran-77 and compiled by

a commercially available Fortran compiler specifically

designed for personal computers. The plotting program uses

a Fortran-compatible graphics package that is also com-

mercially available. The programs, once compiled, can be

distributed to users without the requirement to purchase

either a Fortran compiler or a graphics package; however,

access to a Fortran compiler enhances the utility of the

programs.

Accesion For

NTIS CRAM Vd
DTIC TAB -

IC (JUIalntIouCed 0

INSPECTED B.....
B y

Di-,V bu tion

Av~iilabik.ty Cn es,

Avail ;nd i or
Dist Spei al

iii-

DISCLAIMER

The reader is cautioned that computer programs developed in

this research may not have been exercised for all cases of

interest. While every effort has been made, within the time

available, to ensure that the programs are free of computa-

tional and logic errors, they cannot be considered vali-

dated. Any application of these programs without additional

verification is at the risk of the user.

iv

TABLE OF CONTENTS

I. INTRODUCTION.. 1

II. PROGRAM DEVELOPMEwNT.................................. 4

A. SCOPE OF THE PROGRAMS............................ 4

B. GENERAL METHODOLOGY OF PROGRAM

DEV'EL.OPMENT...................................... 5

C. GENERIC STRUCTURE................................ 9

III. SOFTWARE DESIGN...................................... 15

A. PROBLEM SOLVING PROGRAMS........................ 15

B. PLOTTING PROGRAM................................ 37

IV. CONCLUSIONS AND RECOMMENDATIONS..................... 40

APPENDIX A... 43

APPENDIX B... 51

APPENDIX C... 58

APPENDIX D3... 67

APPENDIX E... 76

APPENDIX F... 91

APPENDIX G... 101

APPENDIX H... 114

APPENDIX I... 128

APPENDIX J1.. 137

APPENDIX K... 154

APPENDIX L... 158

LIST OF REFERENCES.. 285

BIBLIOGRAPHY... 286

INITIAL DISTRIBUTION LIST................................. 287

V

ACKNOWLEDGEMENT

Without the sacrifices of my wife and children I would

not have been able to complete this project. I would like

to thank my family for their sacrifices throughout the

entire duration of the project. I would also like to thank

my advisors Professor D. E. Kirk and Professor R. D. Strum

whose foresight and experience prompted this project and

whose encouragement guided this project to completion.

vi

I. INTRODUCTION

Introductory digital signal processing courses present a

wide spectrum of challenging topics to students enrolled in

the electrical engineering curriculum. Undergraduate level

courses present the transition from analog, continuous-time

systems to digital, discrete-time processes. Topics include

difference equations, state-matrix equations, system

transfer functions, frequency response and the z-transform.

Furthermore, the relationship between the time domain and

the frequency domain is introduced and discrete convolution

is discussed. Graduate level courses introduce filter

design techniques and track the development of the Fast

Fourier Transform (FFT) from the Discrete Fourier Transform

(DFT). The interrelationships between circular convolu-

tion/correlation and the DFT are discussed and a brief

introduction to spectral estimation is given.

In brief, the transition from the continuous-time method

of system analysis to discrete-time methods is challenging

to most students. While analytical methods are covered

thoroughly in the classroom, computer solutions to problems

reinforce learning by facilitating solutions to problems

containing long sequences of data. Furthermore, the digital

computer is the heart of digital signal processing applica-

tions in the real world. To this end, therefore, it is

r~lF~r [!r N!j~j~~z~ %Irq% 1

instructive to present computer programs that can perform

many of the computations required for elementary digital

signal processing (DSP).

The project summarized by this report involved designing

a set of computer programs that can be used in a laboratory

environment to reinforce the basic concepts of digital

signal processing. Although deviations exist, the al-

gorithms developed in First Principles of Discrete Systems

and Digital Signal Processing, by R.D. Strum and D.E Kirk

[Ref. 1] were used extensively in the development of these

programs. The programs were written using Microsoft Fortran

77 Version 4.01.1 This compiler was chosen because of its

flexibility. It will compile Fortran programs for personal

computers enhanced with a math coprocessor (8087/80287) or

for less capable machines. The total project consists of

ten programs related to the solution of digital signal

processing problems and an additional program which produces

2-dimensional plots of the data. The plotting program was

written using the Fortran-compatible Graphmatics software

library. 2 The minimum hardware/software requirements

necessary to run these programs are:

iMicrosoft Corp., 1987, Bellevue, Wa. The programs
will also compile after minor changes using Ryan McFarland
Fortran Version 1.0 or later.

2Microcompatibles Corp., 1983, Silver Springs, MD.

2

* A personal computer with at least 320k of available
memory.

* A monitor with a CGA card installed.3

* A single double-sided, double-density diskette drive.

The following options will either enhance the flexibility or

increase the performance of the programs:

* A Microsoft Fortran Compiler Version 4.01 or later.

* A dot-matrix printer.

Chapter II details the scope of the programs and the

general methodology used in developing them. Chapter III

provides the concise development of each program. Flow-

charts are presented to provide the architecture of the

algorithms, depicting their macro-level design. Applicable

equations are listed for each computational task and the

corresponding Fortran implementation is discussed.

3A computer graphics card is only required to support
the graphics program PLOTDAT.FOR and is not required for the
other programs.

3

II. PROGRAM DEVELOPMENT

This chapter presents the scope of the computer programs

and the general methods used in designing them. The goals

of computational efficiency and user friendliness are

addressed as the two sometimes conflict. Finally, a generic

program structure used throughout the software development

is presented.

A. SCOPE OF THE PROGRAMS

The package consists of ten problem solving programs and

a two-dimensional plotting program. Each of the ten problem

solving programs is oriented toward solving a specific DSP

problem. The title of each program and its corresponding

Fortran filename are listed below:

Problem Solving Programs

1. The frequency response of a digital filter.
Filename: DIGFREQ.FOR

2. The frequency response of an analog filter.
Filename: ANLGFREQ.FOR

3. The Discrete Fourier Transform (DFT) or Inverse DFT
(IDFT) of a finite-length sequence.
Filename: DFT.FOR

4. The periodogram of a finite-length sequence.
Filename: PRDGRM.FOR

5. Convolution and correlation using the DFT algorithm.
Filename: CONCORDT.FOR

4

6. The Fast Fourier Transform (FFT) or Inverse FFT (IFFT)
of a finite-length sequence.
Filename: FFT.FOR

7. Convolution and correlation using the FFT algorithm.
Filename: CONCORFT.FOR

8. Convolution and correlation in the time domain.
Filename: CONCOR.FOR

9. The iterative solution to a linear, time-invariant
difference equation.
Filename: DIFFEQ.FOR

10. The iterative solution to a set of linear, time-
invariant state-matrix equations.
Filename: STATEQ.FOR

Plotting Program

11. A file-driven, two-dimensional plotting algorithm.
Filename: PLOTDAT.FOR

B. GENERAL METHODOLOGY OF PROGRAM DEVELOPMENT

All of the programs are oriented toward engineering

students enrolled in elementary DSP courses. Since most

engineering students have had at least some experience in

Fortran programming, this language was an obvious choice.

The programs can be executed without altering any of the

Fortran code; however, some of the subroutines were

specifically designed to allow the addition of Fortran

statements to produce a desired sequence of data. This

option will be discussed in more detail in Chapter III.

The source code structure of the algorithms is designed

so that the user can follow the flow of each program as it

performs the computations required by the task at hand.

Computational efficiency is generally accepted to be one of

5

-11 'ill 119 11 1 111 11 1

a program designer's primary goals. However, because these

programs were designed with the DSP student as the 'Target

User', an overriding consideration was to make the flow of

the programs understandable. For example, in CONCORDT.FOR

the program will compute, among the options available,

either the linear convolution or the circular correlation of

two data sequences by using the DFT algorithm. The steps

required by these two options are listed below [Ref. l:pp.

424,432,433]:

Option: Linear Convolution

1. Zero pad array #1.
2. Zero pad array #2.
3. Compute the DFT of array #1.
4. Compute the DFT of array #2.
5. Multiply the results of steps 3 and 4.
6. Compute the IDFT of step 5.

Option: Circular Correlation

1. Compute the DFT of array #1.
2. Conjugate the result of step 1.
3. Compute the DFT of array #2.
4. Multiply the results of steps 2 and 3.
5. Compute the IDFT of step 4.

Clearly, if maximum efficiency was the only goal of the

programs, the steps could be combined as follows:

Option: Linear Convolution or Circular Correlation

1. If option = Linear Convolution then zero pad array #1
and array #2.

2. Compute the DFT of array #1.
3. If option = Linear Correlation then conjugate the

result of step 2.
4. Compute the DFT of array #2.
5. Multiply the results of steps 2 and 4.
6. Compute the IDFT of step 5.

6

However, by maintaining the separated algorithms, students

can gain insight into the steps required to accomplish each

of the tasks: linear convolution or circular correlation.

This example, although somewhat contrived, demonstrates the

general approach taken when confronted with the issue of

efficiency versus readability throughout the programming.

It is more instructive to separate the Fortran source code

according to the steps required to perform a specific

functional task rather than combine steps to form an

efficient but less readable algorithm.

Each of the problem solving programs has two modes of

operation: Test or Batch. Test Mode was conceived to guide

inexperienced users through each program, allowing them the

option of running the programs using data prestored in a

data file named XXXX.TST. For example, while running the

program DFT.FOR in Test Mode, the user can elect to use the

prestored input data by entering 'DFT.TST', when prompted

for the name of the input file. The prestored input data

and the output which it produces correspond to an example

problem developed in the header text of each program. The

inexperienced user can therefore:

1) Read the header text including the sample problem.

2) Match the input parameters required by the program to
those occurring in the input file: XXXX.TST.

3) Execute the program in Test Mode to produce the
corresponding output. In Test Mode, key input
parameters read from the input file are printed onto
the monitor screen. This further aids inexperienced

7

users by providing the opportunity to detect invalid

input.

The more experienced user can elect to run the programs

in Batch Mode. In this mode the amount of interface with

the user is minimized. Upon execution in Batch Mode, the

program assumes that the appropriate input parameters have

been stored in the default input file: XXXX.IN (e.g.,

DFT.IN). Figure 2.1 summarizes the events that occur in

each of the two modes: Batch and Test.

Test
Select mode: > Prompt user
Test or Batch. for input

file name.

Batch I

IRead XXXX.IN Read XXXX.TST

or the input
file entered
by user.

Print input
parameters
onto monitor.

_
> Perform

computations.

Ii

Store results in
files XXXX.OUT
and XXXX.DAT.

Figure 2.1 Program Flow.

8

C. GENERIC STRUCTURE

Students who use these programs will find some comfort

in their standardized input and output structures as well as

the documented Fortran code found in the algorithms

themselves. With few exceptions, the specific names of

variables correspond to their conceptual counterparts found

in Reference 1. By using a single DSP textbook such as this

to guide the choice of variable names, some standardization

can be achieved throughout the programs' header text and

accompanying source code. For example the following

variable names, among others, occur in several of the

programs: N = the number of output delays in a system; L =

the number of input delays in a system; x() = the input

sequence of a system; y() = the output sequence of a system,

etc. A more comprehensive discussion of specific variable

names occurs in the appendices. The remainder of this

chapter is dedicated to describing the structure of the ten

problem solving programs. The plotting program is not

considered here as this program was designed with the sole

purpose of reading data from an input file and creating a

two-dimensional plot of the data.

1. Input Structure

All of the programs are file driven, that is, each

program upon execution opens an input file, reads the

contents of the input file, and performs the computations

specified by the input parameters. Because of the variety

9

of possible computations permitted by the programs, little

attempt was made to standardize the specific inputs

themselves. However, the following general specifications

are used:

* All computations are performed using single precision
arithmetic.

* All READ statements are format-directed; that is, none
of the READ statements use list-directed format. An
extensive discussion of the tradeoffs of these two
methods is available in Fortran programming literature
(e.g., [Ref. 2]).

* 'Real' numbers are read using format: F10.0. This
allows the flexibility of reading real numbers entered
using either F or E format descriptors.

* 'Complex' numbers are read as two real numbers, each
having format: FlO.0.

* Integer values required by the programs are read using
the I (integer) format descriptor.

* Character strings required by the programs vary in
length, however, none of the required string inputs is
longer than 10 characters.

* Separate data entries occurring on a given line (record)
of the input file begin in one of the following columns:
1, 11, 21, 31, 41, 51.

During the developmental stage of the programs an

attempt was made to use list-directed inputs. It was

discovered however, that different Fortran compilers treat

variable assignments in different ways. For example, while

some compilers allow integers to be read into variables

declared as real and vice versa, other compilers will not

allow this. In order to maintain the portability of the

programs; therefore, format-directed inputs are used

exclusively.

10

Each of the programs contains instructions in the

header text describing the options available and the input

parameters required to run the program. An example problem

is developed in this text including a brief overview of the

problem, the input required to achieve the desired results,

and a listing of the actual output produced by the program.

This approach allows first-time users to confirm their

understanding of each program's input requirements and

corresponding format. As stated at the beginning of this

chapter, each sample problem can actually be run by

executing the program in Test Mode and specifying the input

filename: XXXX.TST at the prompt. Experienced users can

elect to run the programs in Batch Mode in which case the

programs attempt to OPEN and READ the default input file:

XXXX.IN (e.g., DFT.IN). Input files for other than test

runs should be named according to this scheme.

2. Proaram Structure

Each program consists of a main program and one or

more subroutine subprograms. The computations related to

the functional tasks of each program are performed in

suitably named subroutines. For example, the program

DFT.FOR will compute either the Discrete Fourier Transform

or the Inverse Discrete Fourier Transform of a given input

sequence depending on the option selected. The program

consists of a main program and the subroutines DFT, INVDFT,

11I

and SAMPLE. The subroutines DFT and INVDFT perform the

computations suggested by their names and SAMPLE allows the

user the option of generating an input sequence by providing

the appropriate Fortran statements in the space provided in

the body of the subroutine source code. Housekeeping tasks

are reserved for the main programs. These tasks include,

but are not limited to, the following:

" Obtaining the inputs required by the program, either
from the input file or from the keyboard, as appro-
priate.

" Conducting rudimentary error checks on the input data.

* Calling the appropriate subroutines to perform the
desired computations.

" Performing data conversions (e.g., Real and Imaginary -- >
Magnitude and Phase).

" Creating the output files.

Error checking consists of ensuring that the

numerical input values are within the range specified in

each program's header text. This reduces the chance of

making gross errors such as inputting '30' when a READ

statement requires format 14 thereby producing an erroneous

input of 3000! Character string inputs are used by most of

the programs to distinguish among the available options.

Error checking involving these inputs is limited to a simple

string comparison. The error messages produced by any of

these algorithms are self-explanatory.

12

3. Output Structure

Several purposes are served by the output listings

of the programs. Among these are the following:

1) To allow the user to confirm anticipated results by
comparing the output data generated by the computer
algorithm to analytical results generated indepen-
dently.

2) To place the output data in a format suitable for two-

dimensional plotting by a program such as PLOTDAT.FOR.

The former stated purpose requires that the output

data be in easily readable, tabular form. To accomplish

this, each program generates an output file named: XXXX.OUT

(e.g., FFT.OUT). At the beginning of each tabular output

file the data read from the input file is listed including

any input sequence(s). Additionally, any input sequence(s)

generated by a subroutine such as SAMPLE is also written to

the output file. Lastly, the output data generated by the

program is listed. This comprehensive listing of the input

data as well as the output data allows the user to verify

that the input values were read correctly from the input

file. Furthermore, with both the input data as well as the

output data in one listing, the user can identify the

problem and check the computational results more readily.

The two-dimensional plotting program PLOTDAT.FOR

reads data according to the format: f12.0, 2X, f12.0, with

the first entry on each line corresponding to the ordinate

value and the second, the abscissa. The plotting program

will produce more than one plot if the appropriate data

13

entries exist in the input file. This flexibility of the

plotting program suggests the possibility of plotting not

only the output data, but also any input sequence(s). To

accommodate the capabilities of the plotting program, each

of the ten problem solving programs creates an output file

named: XXXX.DAT (e.g., FFT.DAT). For programs that require

an input sequence(s), both the input sequence(s) as well as

the output sequence(s) are stored in the output file

.XXXX.DAT. These output files are created in addition to the

tabular output files and do not require any user interface.

The general content and format of the programs have

been discussed in this chapter. The next chapter formally

develops each program, relating computational goals to

specific source code.

14

III. SOFTWARE DESIGN

A subsection of this chapter is dedicated to each of the

ten problem solving programs as well as the plotting program

PLOTDAT.FOR. Flowcharts that describe the various al-

gorithms are located in Appendices A through K and listings

of the Fortran source code for the programs are included as

Appendix L.

A. PROBLEM SOLVING PROGRAMS

1. DIGFREO.FOR

The program DIGFREQ.FOR is designed to compute the

frequency response of up to three digital filters. The

program assumes that the filters are stable and that the

transfer function of each filter has the form:

b(O)zL + b(l)zL - I + b(2)zL - 2 + ... + b(L-I)z + b(L)
H(Z) =

c(O)zN + c(1)zN - 1 + c(2)zN- 2 + ... + c(N-l)z + c(N)

(3.1)

The order of the numerator (L) and the order of the

denominator (N) can be assigned any integer values in the

range: 0 to 128. These parameters are read from the input

file. The program accepts up to three distinct filter

equations and will compute the magnitude and phase (degrees)

for up to 101 frequency points for each filter. The

15

'--- .- r 1 'I ' ', " . ,%, 'm,,,' %tm4 "mV

frequency (e) range of interest is also specified by the

user in the input file.

The program consists of the main program DIGFREQ.FOR

and the subroutines COEFF and DFRESP. The user can provide

the filter coefficients [arrays b() and co] in the input

file or can elect to generate them through use of the

subroutine COEFF. If this latter option is chosen then the

user must provide the appropriate Fortran statements in the

space allocated in the subroutine -and the program must be

compiled again before execution. Subroutine DFRESP is

called by the main program to perform the actual frequency

response computations.

This program is an implementation of the psuedocode

presented in Reference 1. [p. 203] The software flowcharts

of Appendix A depict the overall program structure. If the

user has elected to run the program in Batch Mode the

default input file DIGFREQ.IN is opened by the program and

the input parameters are read from it. If Test Mode is

chosen, the input file whose name is specified by the user

is read. The parameters describing each filter are passed

to subroutine DFRESP which then computes the magnitude and

phase of H(z) for each value of z = eje in the specified

range of 6. By using nested multiplication to compute the

frequency response, DFRESP adds a measure of efficiency to

the program [Ref. 3]. In the limit (L = 128, N = 128), if

evaluation of each polynomial term is performed for 101

16

frequency points, the total number of complex multiplies

required is over 1.6 million. The corresponding number of

complex multiplies required using the Nested Multiplication

technique is about 26 thousand.

The input parameters read from the input file and

the corresponding frequency response(s) generated by the

program are stored in tabular form in the output file

DIGFREQ.OUT. Additionally, the program writes the frequency

response data into the file DIGFREQ.DAT. Appropriate labels

and control parameters accompany the data in DIGFREQ.DAT and

are written in a form compatible with the plotting program

PLOTDAT.FOR.

Appendix A traces the development of two digital

filters and compares the anticipated frequency responses

with the computer generated output. Plots of the output

data produced by PLOTDAT.FOR are included in the analyses.

2. ANLGFREO.FOR

The program ANLGFREQ.FOR is designed to compute the

frequency response of continuous-time (analog) systems. The

design of ANLGFREQ.FOR is very similar to DIGFREQ.FOR. The

program assumes that the filter is stable and that the

transfer function has the form:

b(O)sL + b(l)sL- I + b(2)sL- 2 + ... + b(L-l)s + b(L)
H(s) =

a(O)sN + a(l)sN-l + a(2)sN- 2 + ... + a(N-l)s + a(N)

(3.2)

17

The order of the numerator (L) and the order of the

denominator (N) can be assigned any integer values in the

range: 0 to 128. The parameters L and N, as well as the

coefficients b(O), , b(L) and a(O), , a(N) are

specified in the input file. As with DIGFREQ.FOR, the

program will accept up to three distinct filter equations

from the input file, and calculate the magnitude and phase

for up to 101 frequency points for each filter. The user

must specify the frequency range of interest and can elect

to have the magnitude expressed in decibels (dB).

The algorithm consists of the main program ANLG-

FREQ.FOR and the subroutine AFRESP. The main program

controls the input and output and calls subroutine AFRESP to

compute the frequency response for each filter. The

software flowcharts of Appendix B depict the program

structure. Subroutine AFRESP is an adaptation of the

Fortran source code used in subroutine DFRESP [Ref. l:p.

621]. ANLGFREQ.FOR computes the frequency response of

filters expressed in the 's domain'. This differs from

DIGFREQ.FOR which computes the frequency response of filters

expressed in the 'z domain'. Notwithstanding this dif-

ference, the subroutines DFRESP and AFRESP are identical

[except that 'jw' (j omega) is substituted for the complex

variable 'z' in AFRESP] and the efficiencies gained through

the use of nested multiplication apply for AFRESP as well.

1811 1OMA

The output data produced by ANLGFREQ.FOR are stored

in two files: ANLGFREQ.OUT and ANLGFREQ.DAT. The former

output file lists both the input parameters as well as the

output data for each filter in tabular form. ANLGFREQ.DAT

is a listing of the output data in a form suitable for

plotting.

Appendix B presents the conceptual development of an

analog filter and its corresponding frequency response using

ANLGFREQ.FOR. Plots of the output data generated by

PLOTDAT.FOR are included in the analysis.

3. DFT.FOR

A task particularly well suited for the digital

computer is the computation of the Discrete Fourier

Transform (DFT) or its inverse, the IDFT. The DFT of a

sequence N samples long is defined by:

X(k) = Z x(n)e-j2rnk/N, k = 0, 1, ... , N-1
n=0

(3.3)

Its corresponding inverse, the IDFT, is defined by:

1 N-I
x(n) - Z X(k)ej2gnk/N , n = 0, 1, . , N-I

N k=O
(3.4)

An alternate method for calculating the IDFT is the

'Alternate Inversion Formula' [Ref. l:p. 406]:

19

1 N-1 * -j2rnk/N
x(n) = -[E X(k)e n = 0, 1, ..., N-I

N k=O

* Denotes complex conjugation. (3.5)

Once an algorithm has been developed to compute the DFT

(Equation (3.3)], the IDFT can be efficiently computed using

Equation (3.5). The steps involved in computing the IDFT

are summarized below.

I. Conjugate all N values of the sequence X(k).

2. Use the DFT algorithm to compute the DFT of the
conjugated sequence.

3. Conjugate the sequence resulting from step 2 and
divide each value by N. The result is the sequence
x(n).

The program DFT.FOR consists of a main program and

the subroutines DFT, INVDFT, and SAMPLE. The main program

reads the required input parameters from the input file and,

depending on the option specified by the user, computes

either the DFT or the IDFT of the input sequence by calling

the appropriate subroutine. The program will accept a

complex input sequence of up to 256 samples. Since typing a

long sequence of data into an input file is somewhat

impractical, the user has the option of generating the input

sequence by using the subroutine SAMPLE. If this method of

data generation is chosen, the user must provide the Fortran

statements required to generate the sequence, in the space

provided in the subroutine. For example, if the user

20

desires to compute the DFT of the 'real' sequence xin(i)

cos(ir/N) for i = 0, 1, ..., N-i appropriate Fortran

statements to be written into SAMPLE are:

do 100 i = 0, N-1
xin(i) = cmplx(cos(i*3.14159/N), 0.0)

100 continue

A caveat to using this method of data generation is that the

program must be recompiled before execution.

The software flowcharts of Appendix C depict the

overall program structure. As the flowcharts indicate, the

program computes the DFT of the sequence according to

Equation (3.3) and computes the IDFT by use of the Alternate

Inversion Formula. Thus, subroutine INVDFT must call

subroutine DFT as part of the IDFT computation. Both

algorithms are implementations of the psuedocode archi-

tecture presented in Reference 1 [pp. 411, 412]. This

design incorporates the efficiencies of nested multiplica-

tion stated previously. Also included in Appendix C are

three example problems that demonstrate the capabilities of

DFT.FOR.

4. PRDGRM.FOR

As the first of two application programs of the DFT

algorithm, PRDGRM.FOR provides an introduction to the

classical methods of spectrum analysis. The periodogram of

a sequence is defined, quite simply, as the square of the

DFT of the sequence divided by N, the number of points [Ref.

l:pp. 454-456]. Equation (3.3) governs the computation of

21

N A RNNI o m

the DFT sequence X(k), and with this task accomplished the

periodogram can be computed from:

1 *

Sxx(k) = - X(k)X(k) k = 0, 1, ... , N-i
N

• Denotes complex conjugation. (3.6)

The program PRDGRM.FOR will compute the periodogram

of a sequence consisting of up to 256 complex values. To

facilitate the generation of long sequences of input data,

the subroutine SAMPLE has been provided as part of the

algorithm. Instructions for its use are the same as those

discussed in the previous section. The main program

performs the input and output tasks required by the program

and calls subroutine DFT to compute the sequence X(k). Once

the array X(k) has been computed, the main program computes

the sequence Sxx(k) by implementation of Equation (3.6). An

option available to the user is to have the output sequence

expressed in decibels, a result commonly referred to as the

'Log Periodogram'.

Appendix D includes three example problems that

demonstrate the utility of PRDGRM.FOR. Included in the

problem analyses is a discussion of the limitations of the

periodogram as a means of spectral estimation for finite-

length sequences. The software flowcharts of the appendix

outline the program's structure.

22

5. CONCORDT.FOR

The second application program of the DFT algorithm

is CONCORDT.FOR. The program uses the DFT technique to

perform one of the following operations, given two sequences

of complex input values:

1. Linear convolution.

2. Linear correlation.

3. Circular convolution.

4. Circular correlation.

The program consists of the main program CON-

CORDT.FOR and the subroutines DFT, INVDFT, SAMPL1, SAMPL2,

and ZEROPAD. Subroutines DFT and INVDFT compute, respec-

tively, the DFT and the IDFT of a given sequence. Sub-

routines SAMPLI and SAMPL2 allow the user the option of

generating the input sequences xnl() and xn2() by providing

the appropriate Fortran statements in the space provided in

the subroutines. Details of these four subroutines were

presented previously and therefore will not be repeated

here. Subroutine ZEROPAD is designed to extend each of the

input sequences to the length required for computing either

the linear convolution or the linear correlation using the

DFT technique. For example, to compute the linear convolu-

tion of the two input sequences xnl() and xn2() of length N1

and N2, respectively, each of the these sequences must be

padded with enough zeros to extend the sequences to length:

N3 = Ni + N2 - 1 samples. To accomplish this, the sequence

23

xnl() must be padded with N3 - Ni zeros and the sequence

xn2() must be padded with N3 - N2 zeros. This same

procedure is required if the linear correlation of the two

sequences is to be performed. In either case, subroutine

ZEROPAD extends the sequences to the required length. The

program accepts input sequences consisting of up to 128

complex values. The input sequences xnl() and xn2() are

assumed to exist in the sample intervals 0 to Ni - 1 and 0

to N2 - 1, respectively.

The technique of using the DFT algorithm to compute

the convolution of two sequences is based on the concept

that time domain convolution corresponds to frequency domain

multiplication. Given this relationship, the steps required

to compute the circular convolution of two sequences are

depicted below. For ease of documentation, the following

symbols are used:

* Denotes linear convolution.
®Denotes circular convolution.

xni()

X xn3()

xn2()I

xn3() = xnl() e xn2()

Figure 3.1 Circular Convolution.

24

The circular correlation R(can be computed in the

xnlxn2

time domain by reversing the order of the sequence xnl() and

performing circular convolution on the resulting sequences.

Circular correlation can also be performed using the DFT

technique by performing the following steps:

xn1x-' COJU°: E 7 -
xnl2() ->> -

xn2() I LIII xnixn2

()= The circular correlation of xnl() and xn2().
xnlxn2

Figure 3.2 Circular Correlation.

Linear convolution is performed by first zero

padding the sequences to length N3 = N1 + N2 - 1 and then

performing circular convolution on the extended sequences.

Thus, the steps required to perform linear convolution are:

xnl() -> ZEROPAD]->

X-> -> xn3()

xn2 () -> OP -> -

xn3() = xnl() * xn2()

Figure 3.3 Linear Convolution.

25

Linear correlation is similarly computed by first

zero padding the sequences and then performing circular

correlation on the extended sequences. The steps required

for this computation are:

-> -> L 'i1>R()

Xn2(> i xnlxn2

R) - The linear correlation of xl() and xn2(.
xnlxn2

Figure 3.4 Linear Correlation.

A phenomenon encountered when performing the linear

correlation operation, using the DFT technique, is 'wrap-

around' of the output sequence. This is directly at-

tributable to the required zero padding of the input

sequences. While it would be a simple matter of software

manipulation to prevent the wraparound from appearing in the

final output sequence, it is felt that incorporation of the

phenomenon is relevant to student comprehension of the

actual computations involved. Example #4 of Appendix E

demonstrates the wraparound that occurs when the linear

correlation of two input sequences is computed.

The procedures described above as well as a

comprehensive analysis on use of the DFT technique to

perform convolution and correlation are presented in Chapter

26

7 of Reference 1. CONCORDT.FOR is a Fortran implementation

of this technique. Flowcharts describing the structure of

CONCORDT.FOR and subroutine ZEROPAD are included in Appendix

E. Also included in this appendix are example problems

demonstrating the four computations that CONCORDT.FOR is

capable of performing.

6. FFT.FOR

Similar in purpose to DFT.FOR, FFT.FOR is designed

to compute the DFT or the IDFT of a complex input sequence

consisting of up to 256 samples. The advantage FFT.FOR has

to offer over DFT.FOR is use of the Fast Fourier Transform

(FFT) technique for computing the DFT. Entire books have

been dedicated to this subject, most of which include a

Fortran algorithm for performing the FFT computation. The

FFT technique used by FFT.FOR is a Radix-2, Decimation In

Time algorithm adapted from the psuedocode design appearing

in Reference I [pp. 510-512]. Included in this reference is

a software flowchart of the subroutine REVERSAL which is

discussed in more detail below.

The program consists of the main program FFT.FOR and

the subroutines FFT, REVERSAL, INVFFT, and SAMPLE. The main

program calls subroutine FFT to perform the actual FFT

computations. In order to use the Decimation In Time

algorithm, the input sequence must be reordered according to

a 'bit-reversal' scheme. This scheme involves changing the

position that each sample holds in the input sequence by

27

iM

reversing the order of the bits corresponding to the

positional address of each sample. For example, an 8-sample

input sequence would have the binary positional addresses:

[000 001 010 011 100 101 110 111]. After reversing the

order of the sequence, the binary addresses of the bit-

reversed sequence would be: (000 100 010 110 001 101 011

111]. In terms of the Fortran array x(), the 8-element,

bit-reversed array will contain the original eight values

but rearranged into the new order:

x(o)
x(4)
x(2)
x(6)
x(1)
x(5)
x(3)
x(7)

Subroutine REVERSAL performs this reordering of the input

sequence. The main program passes the original input

sequence to the subroutine in the array xtmp() and the

subroutine returns the bit-reversed sequence in the array

x().

In addition to the FFT computation, FFT.FOR was

designed to compute the Inverse Fast Fourier Transform

(IFFT). If used for no other reason, the IFFT serves as a

check on the FFT computation. For example, the user can

elect to have the FFT of a sequence computed, and as a check

on the computed results, run the program again but this time

using the FFT results as input to the IFFT computation. The

results of this second run should be the original input

28

sequence, with some allowance for single-precision roundoff

error. Subroutine INVFFT performs the IFFT computation in a

manner identical to the IDFT computation performed by

subroutine INVDFT. In fact, the flowcharts of the two

subroutines, except for the names of the variables, are

identical.

Subroutine SAMPLE provides the means to generate the

input sequence by allowing the user to write the appropriate

Fortran statements into the space allocated in the sub-

routine. The user can elect to use this method of data

generation or can choose to provide the N complex input

samples in the input file.

Because FFT.FOR is a Radix-2 algorithm, the input

sequence must be of length N = 2m, m = integer. This

apparent limitation to the utility of the FFT is easily

overcome in practical applications by either: 1) Requiring

the sampled input sequence to be of the correct length or;

2) Zero padding the input sequence until it is of length

N = 2m. This later technique is used in the program CON-

CORFT.FOR presented in the next section. Zero padding

should not be used to extend a sequence for the purpose of

computing a periodogram; however, since the addition of

zeros will cause erroneous frequency information to appear

in the periodogram sequence.

The input and output sequences are stored in tabular

form in the file FFT.OUT. Additionally, the sequences are

29

written into the file FFT.DAT in a form suitable for

plotting.

The software flowcharts of Appendix F depict the

structure of FFT.FOR and the subroutines FFT, INVFFT and

REVERSAL. Also included in this appendix are two example

problems that demonstrate both the FFT and the IFFT

computations.

7. CONCORFT.FOR

As an application program for the FFT algorithm,

CONCORFT.FOR is capable of performing any one of the

following four operations, given two sequences of complex

input data:

1. Linear convolution.

2. Linear correlation.

3. Circular convolution.

4. Circular correlation.

Similar in design to CONCORDT.FOR, this program also

uses the DFT technique to perform the selected operation.

Figures 3.1 through 3.4 describe the computations required

by each of the four operations. In order to take full

advantage of the efficiencies of the FFT algorithm however,

each of the DFT computations required by CONCORFT.FOR is

accomplished using an FFT. This design invokes the

requirement that the input sequences be of length N = 2m

(m = integer), since the FFT subroutine used by the program

is a Radix-2 algorithm. For the linear convolution/

30

correlation operations this requirement is easily fulfilled

by zero padding the sequences to a suitable length. For

example, if the sequences xnl() and xn2() are of length N1 =

4 and N2 = 3, the linear convolution/correlation operations,

as computed via the DFT technique, require that the input

sequences be zero padded to the minimum length: N3 = N1 +

N2 - 1 = 6. Since N3 = 6 is not an integer power of two,

CONCORFT.FOR will further extend the sequences to length

N3 = 23 = 8 by additional zero padding. The extended

sequences can then be used in the FFT computations.

While zero padding is intrinsic to CONCORFT.FOR's

linear convolution/correlation operations, its use in

performing circular convolution/correlation will lead to

erroneous results. For this reason, CONCORFT.FOR will

perform circular convolution/correlation only if the input

sequences are of equal length and the lengths are an integer

power of two. The program is designed to screen the input

data to ensure that these requirements are met. Suitable

error messages are printed on the screen and the program's

execution is halted if they are not met.

CONCORFT.FOR accepts input sequences consisting of

up to 128 complex values. The input sequences xnl() and

xn2() are assumed to exist in the sample intervals 0 to

N1 - 1 and 0 to N2 - 1, respectively. The main program

controls the input/output tasks and calls the appropriate

subroutines to perform the selected operation. There are

31

11 IN C!

six subroutines in all and a brief description of the

function of each subroutine is as follows:

1. FFT - Computes the Fast Fourier Transform of a
sequence.

2. INVFFT - Computes the Inverse Fast Fourier Transform
of a sequence.

3. REVERSAL - Rearranges a sequence into bit-reversed
order.

4. ZEROPAD - Extends a sequence by adding an appropriate
number of zero values.

5. SAMPL1 - Allows the user the capability of generating
the sequence xnl() by providing the appropriate
Fortran statements in the space allocated in this
subroutine.

6. SAMPL2 - Allows the user the capability of generating
the sequence xn2() by providing the appropriate
Fortran statements in the space allocated in this
subroutine.

A software flowchart describing the design of

CONCORFT.FOR is provided in Appendix G. Also included in

this appendix are four example problems, each of which

demonstrates one of the operations that CONCORFT.FOR is

capable of performing.

8. CONCOR.FOR

The program CONCOR.FOR is designed to compute either

the linear convolution or the linear correlation of the two

input sequences xnl(n) and xn2(n). The non-zero values of

the sequence xnl(n) must exist in the range: nsl : n : nel.

Similarly, the non-zero values of xn2(n) must exist in the

range ns2 5 n 5 ne2. The constraints on the values nsl,

32

nel, ns2, ne2 are: - 128 5 nsl 5 nel 5 128 and - 128 5

ns2 : ne2 128.

Unlike the frequency domain techniques used to

perform convolution and correlation in CONCORDT.FOR and

CONCORFT.FOR, all computations performed by this algorithm

are done in the time domain. For linear convolution,

Equation (3.7) applies.

yn(n) = Z xnl(m)*xn2(n-m)
m= _-0

(3.7)

For linear correlation, as it is performed by this al-

gorithm, Equation (3.8) applies.

R(p) = E xnl(m)*xn2(p+m)
xnlxn2 m=-0

(3.8)

The program consists of the main program CONCOR.FOR

and the subroutines SAMPL1, SAMPL2, CONVOL, and CORREL.

Subroutines SAMPL1 and SAMPL2 allow the user to generate

either of the input sequences by providing the appropriate

Fortran statements in the space provided in the subroutines.

Subroutine CONVOL is called by the main program to compute

the linear convolution of the two sequences, according to

Equation (3.7). The computations are necessarily limited to

include only the non-zero ranges of the two input sequences.

Subroutine CORREL is called by the main program to compute

the linear correlation of the two input sequences, according

to Equation (3.8). Similar to CONVOL, the computation is

33

limited to the non-zero ranges of the input sequences. An

alternate method of computing the linear correlation would

be to reverse the sequence of values stored in xnl(n) and

then to compute the linear convolution of the resulting

sequences [Ref. l:p. 432]. This method is not used in this

algorithm.

Appendix H contains flowcharts that describe the

main program, as well as the subroutines CONVOL and CORREL.

The appendix also includes example problems that demonstrate

the performance of CONCOR.FOR.

9. DIFFEO.FOR

The program DIFFEQ.FOR is designed to compute the

iterative solution to a linear, time-invariant (LTI)

difference equation. The program will compute the solution

for up to four distinct equations, each of the form:

y(ns) = a(1)*y(ns-l) + a(2)*y(ns-2) + ... + a(N)*y(ns-N) +

b(0)*x(ns) + b(1)*x(ns-1) + ... + b(L)*x(ns-L)

(3.9)

The solution to each equation is computed for values

of ns in the range 0 : ns : nstop, where nstop can be

assigned any integer value in the range 0 nstop : 300.

The input sequence x(ns) is assumed to be zero for values of

ns less than zero. The parameter L corresponds to the

maximum number of delays in the input sequence and can be

assigned any integer value in the range 0 5 L 5 128.

Similarly, the parameter N corresponds to the maximum number

34

U

of delays in the output sequence and can be assigned any

integer value in the range 0 : N : 128.

To run the program, the user must provide the

parameters N, L and nstop, as well as the coefficients

a(l)...a(N), and b(0)...b(L). For values of N > 0, the user

must also provide the initial condition sequence y(-N)...

y(-l). The user has the option of providing the values of

x(ns) in the input file or generating the sequence through

use of the subroutine XGEN. All of the aforementioned

inputs must be provided for each difference equation to be

solved.

The program consists of the main program DIFFEQ.FOR

and the subroutines DIFFEQ and XGEN. Flowcharts of the main

program and the subroutine DIFFEQ are provided in Appendix

I. The program is a computer implementation of the

psuedocode algorithms presented in Reference 1 (pp. 84-86].

Also presented in Appendix I are two example problems that

demonstrate the capabilities of DIFFEQ.FOR.

10. STATEO.FOR

The final problem solving program is designed to

compute the iterative solution to a set of linear, time

invariant state equations. The state and output equations

are assumed to be of the form:

v(ns+l) = Av(ns) + Bx(ns)

(3.10)

y(ns) = Cv(ns) + Dx(ns)

(3.11)

35I

where:

* x() is the M x 1 input vector,

* v() is the N x 1 state vector,

* y() is the Q x 1 output vector,

* A is an N x N matrix of real constants,

* B is an N x M matrix of real constants,

* C is an Q x N matrix of real constants and,

* D is an Q x M matrix of real constants.

The program will compute the solution to the system

of equations for values of ns in the range 0 5 ns nstop.

The limits on the parameters M, N, Q, and nstop are:

0 5 M 5 4
0 5 N 5 10
0 5 4
0 5 nstop S 99.

(3.12)

These parameters as well as the values for the matrices A,

B, C, D, and the vector comprising the initial condition of

the system (vector v() at ns = 0) must be provided by the

user in the input file. The user can elect to provide

values for the input vector x(ns) in the input file, or,

alternatively, may choose to generate these values by

writing the appropriate Fortran statements into subroutine

XGEN. The output of the program is the time-history of the

vector y(ns); however, the program stores all values of the

vectors x(ns), v(ns), and y(ns) in the tabular output file

STATEQ.OUT.

36

-- , , -Ia

The program consists of the main program STATEQ.FOR

and the subroutines ITRATE and XGEN. The algorithm is a

Fortran implementation of a design adapted from Reference 1

(pp.762-765]. The main program reads the input parameters

from the input file and calls subroutine ITRATE to compute

the solution to the state equations. Subroutine XGEN exists

for the sole purpose of allowing the user the option of

generating the input sequence(s) internally, rather than

providing the values in the input file. Appendix J includes

the software flowcharts of the main program and the

subroutine ITRATE. Also included in this appendix are two

example problems that demonstrate the capabilities of

STATEQ.FOR.

B. PLOTTING PROGRAM

1. PLOTDAT.FOR

The sole purpose of the program PLOTDAT.FOR is to

create 2-dimensional (2-D) graphs of values read from an

input file. The program prompts the user for the name of

the input file and will create up to nine 2-D plots, each

consisting of up to 999 data points. Each plot requires

three labels:

1) the title of the plot,

2) the x-axis label and,

3) the y-axis label.

For plots that consist of more than 25 data points, the

program displays the output by connecting the points through

37

use of a linear interpolation (straight-line) scheme. Plots

of 25 points or less consist of the symbol '+' at the

tabulated points only. The number of data points comprising

a given plot, and the plot labels comprise the header

information required for each plot. In addition to these

parameters, the ordinate and abscissa values for each point

to be plotted must be included in the input file. PLOT-

DAT.FOR reads these values according to the format: f12.0,

2x, f 12.0. The first entry corresponds to the ordinate

value and the second entry, the abscissa value. The F-

format descriptor was chosen because its use permits values

written using either the E or F-format descriptors to be

read from the file.

The program consists of the main program PLOTDAT.FOR

and the subroutines SCALE and GRIDD. The main program reads

the input file and creates the plots. Subroutine SCALE is

called by the main program to scale the input values so as

to optimize the clarity of the plots. Subroutine GRIDD will

overlay a dashed-line grid onto the plot if the user elects

to have this done. PLOTDAT.FOR requires a Color Graphics

Adapter (CGA) card to display the plots on the monitor

screen. In addition, the user can elect to have a printed

hardcopy of each plot created. However, to facilitate

printing of the graphs, the system in use must include a dot 4
matrix printer. The program will not drive plotters of all

types. If the system has an Extended Graphics Adapter (EGA)

38

M11

card, rather than the specified CGA card, hardcopy printouts

of the graphs cannot be created by the program directly.

The plots included in Appendices A-J were created

using PLOTDAT.FOR. Appendix K is a software flowchart

describing the structure of PLOTDAT.FOR and the subroutines

SCALE and GRIDD.

39

IV. Conclusions and Recommendations

As the final phase of this project, the eleven programs

included in the package were distributed on a voluntary

basis to students enrolled in digital signal processing

courses. As part of the course requirements, the students

had to solve a variety of signal processing problems

representative of the type that the programs were designed

for. Throughout this software evaluation phase, the

students provided feedback as to the utility of the

programs. While a majority of this feedback was positive,

three areas of concern warrant attention in this report.

1. The graphics capability of PLOTDAT.FOR is limited to
machines with CGA/EGA graphics cards.

2. In order to get the most use out of the ten problem
solving programs, the user must have access to a
Fortran compiler capable of compiling the programs as
written.

3. Because the programs are file-driven, the user must
carefully read the header text of each program in
order to execute the programs successfully. Although
the example problems in the header text and the
corresponding sample input files seem to alleviate
some of the common formatting errors, new users
experienced some displeasure with the format require-
ments.

The first area of concern, although valid, is consistent

with the advertised capabilities of PLOTDAT.FOR. As

graphics software becomes more advanced, PLOTDAT.FOR should

be updated to incorporate any changes that increase the

40

portability of the program. A caveat to this, however, is

the obvious temptation to use sophisticated software

designed for more capable machines at the expense of its

compatibility with less capable ones. The primary goal of

the plotting program is portability among the broadest

possible span of target users.

The second area of concern is also somewhat warranted.

The programs were optimally designed for use on a machine

equipped with a suitable Fortran compiler. The presence of

a compiler allows the user to add source code to the

programs, an option particularly useful in generating long

sequences of input data. To this end, however, any high

level language can be used to create the input files, as

long as the required data can be stored in a form compatible

with the programs. In brief, any Fortran compiler would be

suitable for generating the input data thus eliminating the

need for a specific compiler.

Lastly, the dissatisfaction among the students over the

file-driven versus menu-driven design of the programs may

warrant a future design change. The principle concern was

the rather stringent input formats required by the programs.

As the students became more experienced with the programs,

however, these problems subsided somewhat. Nevertheless,

the programs' input sections can be restructured to

incorporate the features of both the menu and the file-

driven designs. As envisioned, in menu-driven mode the

41

programs would prompt the user for each input value, storing

the values in an input file for future use. This mode,

despite its time consuming mechanics, would be attractive to

first-time users who could use the input files created by

the programs as a guide for subsequent runs. Experienced

users would create the required input files and run the

programs in the file-driven mode. This mode is already

incorporated in the programs as they exist. The redesign of

the programs; therefore, would only require incorporation of

a menu-driven mode. Such a design change is fully within

the capabilities of the Fortran compiler used to create

these programs.

42

APPENDIX A

Two digital filter designs are developed in this section to

demonstrate the performance of the program DIGFREQ.FOR.

An analysis of the designs includes a listing of the input

required to execute the program and the corresponding output

that is produced. The plotting program PLOTDAT. FOR was

used to plot the output data and hard copies of these plots

are also included. The software flowchart of the program is

included as the last pages of this appendix.

The variable names listed below are used in the Fortran

source code of DIGFREQ.FOR and in the corresponding

flowcharts.

numsys - The integer value that specifies the number of
distinct filter equations whose parameters occur
in the input file.

L - The integer value that specifies the order of
the numerator polynomial.

N - The integer value that specifies the order of
the denominator polynomial.

dsorce - The character string 'F' or 'S' denoting whether
the system coefficients are to be read from the
input file (F) or generated (S) through use of
the subroutine COEFF.

thetaO - The starting value of e (rad).
numpts - The integer value that specifies the desired

number of frequency points.
yscal - The character string 'STD' or 'LOG' that

specifies whether standard magnitude (STD) or
magnitude expressed in decibels (LOG) is to be
computed.

b() - The array containing the numerator coefficients.
c() - The array containing the denominator coeffi-

cients.
mh() - The array containing the magnitude values of

the computed frequency response.
ph() - The array containing the phase values (degrees)

of the computed frequency response.

43

Examole #1

This example is identical to the sample problem found in

the header text of the program. The system is a first order

low-pass filter with a pole at z = 0.5, and a zero at z = 0.0.

The filter transfer function, in the form of Equation (3.1), is:

z
H(z) = (A.1)

z - .5

The goal is tu calculate the frequency response of the filter

for frequencies in the range: 0 : e : 3.14159 (rad). The

listings that follow include the input file DIGFREQ.TST

required to produce 11 output points and the tabular output

file DIGFREQ.OUT. Also included are plots of the output for

101 frequency points. An analysis of the data confirms the

low-pass nature of the filter.

DIGFREO.TST

1
001 001 F STD
.314159 0.0 011
1.0 0.0
1.0 -.5

44

DIGFREO. OUT

INPUT DATA FOR SYSTEM # 1

INPUT DATA SOURCEFILE: DIGFREQ.TST
DEGREE OF NUMERATOR = 1
DEGREE OF DENOMINATOR = 1
dsorce = F
NUMBER OF FREQUENCY POINTS =11 MAGNITUDE OPTION =STD

STARTING VALUE OF THETA = .OOOOOOE+00
INCREMENT OF THETA = .314159E+00

THE NUMERATOR COEFFICIENTS b(Q),b(1) ... b(L) ARE:

.1000E+01 .OOOOE+00

THE DENOMINATOR COEFFICIENTS c(O),c(1) ... c(N) ARE:

.1000E+01 -. 5000E+00

OUTPUT DATA FOR SYSTEM # 1

THETA MAGNITUDE PHASE
(RADIANS) (DEGREES)

* OOOOOOE+OO . 200000E+01 . OOOOOOE+00
.314159E+00 .182897E+01 -. 164149E+02
.6283 18E+00 . 150588E+01 -. 262 677E+02
.942477E+00 .122886E+01 -. 298071E+02
.125664E+01 .103088E+01 -.293546E+02
.157080E+01 .894428E+00 -.265651E+02
.188495E+01 .800894E+00 -.223862E+02
.219911E+01 .737654E+00 -. 173608E+402
.251327E+01 .696900E+00 -.118186E+02
.282743E+01 .674038E+00 -.597793E+01
.314159E+01 .666667E+00 -. 484184E-04

---------- END OF RUN, SYSTEM# 1 -------

45

49
309

C*s

064 Sma

afta

a W er

cm clicli cU

Figurea A. antdmrsos falo-asfle
Exa.l #1.

S S46

Lvo

389
3"

-am .

As=

-W=M % M

UWON
12.8S

a a aaa ;

Figure A.2 Phase response of a low-pass filter-
Example #1.

47

open input
file.

read numays.

> For n -1 uss

Read L, N, ,dsorce, yscal.

dsorce~~ I' Y1Call COEFF to generate
arrays b() and co.

/Read bo.
Read co.

Conduct error checks.

fiue A.3 DIFRQ.ORSotwreFlwcar.

48S

Ti

Generate arrays b() and co
according to user provided
algorithm.

Figure A.4 COEFF Subroutine Flowchart.

49

Ie - (0

z - 03xp(jO)

[For k -1, L.

num - z*nuu + b(Jc)

Figre .1 F, Suruin.lwcat

don - ~den c ~ 50

Appendix B

A fifth-order, low-pass filter is used in this appendix

to demonstrate the performance of the program ANLGFREQ.FOR.

The filter transfer function is in the form of Equation

(3.2). The analysis that follows compares the theoretical

frequency design specifications of the filter to the

frequency response computations produced by the program,

The software flowcharts of the program ANLGFREQ.FOR and the

subroutine AFRESP are included as the last pages of this

appendix.

The variable names listed below are used in the Fortran

source code of the program and in the corresponding

flowcharts.

numsys - The integer value that specifies the number of
distinct filter equations whose parameters
occur in the input file.

L - The integer value that specifies the order of
the numerator polynomial.

N - The integer value that specifies the order of
the denominator polynomial.

omegaO - The starting value of w (rad/s) for which the
frequency response is to be calculated.

dlomga - The increment of w (rad/s).
numpts - The integer value that specifies the desired

number of frequency points.
yscal - The character string 'STD' or 'LOG' that

specifies whether standard magnitude (STD) or
magnitude expressed in decibels (LOG) is to be
computed.

b() - The array containing the numerator coeffi-
cients.

a() - The array containing the denominator coeffi-
cients.

mh() - The array containing the computed magnitude
value for each frequency point.

ph() - The array containing the computed phase value
(degrees) for each frequency point.

51

A fifth-order Chebyshev Low-Pass Filter has the transfer

function:

62268.8
H(s) s5 + 10.605s 4 + 337.5s3 +2342.25s2 + 23236.9s + 62268.8

(B.2)

The filter was designed to have a ripple passband edge

frequency of w = 15.0 (rad/s) and a maximum ripple of 2 dB

[Ref. l:pp. 630-637]. The input file ANLGFREQ.IN listed

below provides the inputs necessary for ANLGFREQ.FOR to

compute the magnitude (dB) and phase (Deg) response of this

filter across the frequency range: 0 5 w 5 20 (rad/s).

As can be seen from both the tabular output and the

accompanying plots the filter specifications have been met.

The magnitude of 0 db at frequency w = 0 is characteristic

of this type of normalized low-pass filter. The edge of the

ripple passband has a magnitude of -2 dB at w =15 (rad/s)

and the 2 dB ripple is not exceeded within the ripple

passband.

1
000 005 021 LOG
1.0 0.0
62268.8
1.0 10.605 .3375E03 2342.25 23236.9 62268.8

52

ANLGFREO. OUT

INPUT DATA FOR SYSTEM # 1

INPUT DATA SOURCEFILE: ANLGFREQ.IN
DEGREE OF NUMERATOR = 0
DEGREE OF DENOMINATOR = 5
NUMBER OF FREQUENCY POINTS =22. MAGNITUDE OPTION =LOG

STARTING VALUE OF OMEGA = .OOOOOOE+00
INCREMENT OF OMEGA = .100000E+01

THE NUMERATOR COEFFICIENTS b(O),b(1) ... b(L) ARE:

.6227E+05

THE DENOMINATOR COEFFICIENTS a(0) ,a(2.) .. .a(N) ARE:

.1000E+01 .1060E+02 .3375E+03 .2342E+04

.2324E+05 .6227E+05

OUTPUT DATA FOR SYSTEM # 1

OMEGA MAGNITUDE (dB) PHASE
(rad/s) (DEGREES)

* OOOOOOE+00 OOOOOOE+00 OOOOOOE+I00
.100000E+01 -.260284E+00 -.209105E+02
.200000E+01 -.868081E+00 -.395377E+02
.300000E+01 -.149418E+01 -.553515E+02
.400000E+01 -. 189199E+01. -.691887E+02
.500000E+01 -. 193554E+01 -.823632E+02
.600000E+01 -. 158803E+01 -.963804E+02
.700000E+01 -.917171E+00 -. 112999E+03
.800000E+01 -.196446E+00 -.133940E+03
.900000E+01 .423856E-01 -.159062E+03
.100000E+02 -.519360E+00 .175548E+03
.110000E+02 -.143810E+01 .153702E+03
.120000E+02 -.198221E+01 .134785E+03
.130000E+02 -.158172E+01 .114249E+03
.140000E+02 -.216956E+00 .804525E+02
.150000E+02 -.201998E+01 .233437E+02
.160000E+02 -.831394E+01 -.135395E+02
.170000E+02 -.140297E+02 -.300361E+02
.180000E+02 -.187218E+02 -.391769E+02
.190000E+02 -.226985E+02 -.451868E+02
.200000E+02 -.261739E+02 -. 495617E+02

---- --- ---- --- END OF RUN, SYSTEM #1 - - - - - - - - -

53

0144

I I-

Oda,

ac

-54

3-

GO/ mO-

Cr~-

Fite -Eaml #1
"55

/open input f ile.

Read numsys.

For n = ,numsys

r~~o toa monto screen.,ysal

Cal AF o calult

Fwigue B.3tdta ANLGFREQ.OotaeFocat

56S

For rip =1, numpts. I<

omegav() omegaO + (np-1)*dlomgal

num = b(O)
den = a(O)
S = jW

h =num/deni

mh(np) =magnitude of h
ph(np) =phase (degrees) of h

scal= 'OG'y >mh(np) =20*1og(mh(np))

Figure B.4 AFRESP Subroutine Flowchart.

57

Appendix C

As a practical exercise to demonstrate the performance

of DFT.FOR, two sample sequences were generated and the

program DFT.FOR was used to compute either the DFT or the

IDFT of the sequences. Contained in this appendix is a

brief analysis of the chosen examples including listings of

the output produced by the program. The software flowcharts

describing DFT.FOR and the subroutines DFT, INVDFT, and

SAMPLE are also included.

The variable names listed below are used in the Fortran

source code of the program and in the corresponding

flowcharts.

N - The integer value that specifies the number of
complex samples contained in the input sequence
xin(.

dsorce - The character string 'F' or 'S' that specifies
whether the input data is to be read from the
input file (F) or generated (S) through use of
the subroutine SAMPLE.

option - The character string 'DFT' or 'INV' that
specifies the computation to be performed.

xin() - The complex array containing the N samples of
the input sequence. A sequence consisting of
only 'real' numbers is stored as values having
an 'imaginary' part of 0.0.

xout() - The complex array containing the N output
values.

xmag() - The array containing the N values of the output
magnitude.

xph() - The array containing the N values of the output
phase (Degrees).

wm - The complex value: wm = e-j27k/N.

58

Example #1

For the first example problem a unit ramp sequence

consisting of 5 values was input to DFT.FOR. The goal was

to compute the DFT of the sequence. This example problem is

also developed in the header text of DFT.FOR and can be run

by the user by selecting Test Mode and entering 'DFT.TST'

when prompted for the name of the input file. The listings

that follow include the input file DFT.TST and the tabular

output file DFT.OUT.

DFT.TST

005 F DFT
0.0 0.0
1.0 0.0
2.0 0.0
3.0 0.0
4.0 0.0

59

Eli J IX CI (I 1

INPUT DATA SOURCEFILE: DFT.TST
VALUE OF N = 5 dsorce = F option =DFT

INPUT DATA

SAMPLE # REAL IMAGINARY
0 .OOOOOOE+00 .OOOOOOE+00
1 .100000E+01 .OOOOOOE+00
2 .200000E+01 .OOOOOOE+00
3 .300000E+01 .OOOOOOE+00
4 .400000E+01 .OOOOOOE+00

OUTPUT DATA

SAMPLE # REA nQINARY XAGNXTUDE PKASE
C DEGREES

0 .100000Z+02 .0000002+00 .1000002+02 .000000Z+0O
1 -.2300001+01 .344096Z+01 .4253251+01 .126000Z+03
2 -.2500002+01 .8123002+00 .2628661+01 .1620002+03
3 -.2500002+01 -.812299Z+00 .2628662+01 -.162000E+03
4 -.2500002+01 -.3440961+01 .425326Z+01 -.1260001+03

60

Example #2

As an extension to the first example problem and to

demonstrate the IDFT option, the DFT results of the first

problem were input to the program and the IDFT was computed.

As one would expect, the original unit ramp sequence was

generated confirming the ability of the program to compute

either the DFT or its inverse, the IDFT. Numerical roundoff

corresponding to the single precision accuracy of DFT.FOR

accounts for the slight deviation between the original unit

ramp sequence and the results produced by this example.

DFTIN

005 F INV
.10000E02 0.0
-.2500E01 .344096E01
-.2500E01 .812300
-.2500E01 -.812299
-.2500E01 -3.44096

61

INPUT DATA SOURCEFILE: DFT.IN
VALUE OF N = 5 dsorce = F option = INV

INPUT DATA

SAMPLE # REAL IMAGINARY
0 .100000E+02 .OOOOOOE+00
1 -. 250000E+01 .344096E+01
2 -. 250000E+01 .812300E+00
3 -. 250000E+01 -. 812299E+00
4 -. 250000E+01 -. 344096E+01

OUTPUT DATA

SAMPLE # REAL nAtnIARY MAGNITUDE PHASE
(DEGREES)

0 .0000001+00 .238419E-06 .2384191-06 .900000E+02
I .999998E+00 -. 210175E-06 .9999981+00 -. 120422Z-04
2 .200000E+01 .136323E-06 .200000E+01 .391109E-05
3 .300000E+01 .358854E-06 .3000001401 .6853611-05
4 .400000E+01 .2983631-06 .4000001+01. .427659E-05

62

opo Callt Sfile.t

generate input: xino).

Moe?>Write input data t ie

T.OUT and D!T.DAT.

option - ? N Cafll IWVDFT to
compute the IDFT.

OFT

[Call OT to compute the D~

Fma iur e o maFniFud Sofwar Flowhart

63

CilI

Generate xin() according to
user provided algorithm.

Figure C.2 SAMPLE Subroutine Flowchart.

64

T

For i =1, Ni

conjugate each xin(i).

-For I=0, N-i.

Conjugate each xout(i).

Figure C.3 INVDFT Subroutine Flowchart.

65

> For k =0, N-i1

win - e-j2TJC/N

xout(k) = xin(N-l)

Figure CA4 DFT Subroutine Flow Chart.

66

ApDendix D

Three example problems are developed in this appendix to

demonstrate the program PRDGRM.FOR. Example #1 is a

demonstration of the program using a short input sequence.

A listing of both the input sequence and the output sequence

are included in the analysis. Examples #2 and 3 require

long sequences of data and therefore only plots of the input

and output sequences are included. The software flowchart

of PRDGRM.FOR is included as the last page of this appendix.

Since the flowcharts of the subroutines SAMPLE and DFT were

presented in Appendix C, they are not repeated in this

appendix.

The variable names listed below are used in the Fortran

source code of PRDGRM.FOR and in the corresponding flow-

charts.

N - The integer value that specifies the number of
complex samples contained in the array xn().

dsorce - The character string 'F' or 'S' that specifies
whether the input data is to be read from the
input f ile (F) or generated (S) through use of
the subroutine SAMPLE.

yscal - The character string 'STD' or 'LOG' that
specifies whether the output sequence is to be
expressed as standard (STD) or decibel (LOG)
magnitude.

xn() - The complex array containing the N input
values. A sequence consisting of only real
numbers is stored as values having an imaginary
part of 0.0.

xk() - The complex array containing the DFT sequence
corresponding to xn(, i.e., xk() = DFT[xno].

Sxx() - The array containing the N values of the
periodogram sequence. This array contains the
output sequence of the program.

67

Mai

Examele #1

Because PRDGRM.FOR uses the DFT algorithm as part of

the periodogram computation, a simple demonstration of the

program's accuracy is to compare the results of PRDGRM.FOR

to the results of DFT.FOR using the same input sequence for

both programs. The sequence chosen was the five samples of

the unit ramp. The listings that follow include the input file

PRDGRM.TST required to run this problem, as well as the

tabular output file PRDGRM.OUT containing the computed

results. The DFT results were presented in Appendix C.

By comparing the output sequences of the two programs it

is easy to see the relationship between the DFT and the

periodogram as described by Equation (3.6).

This example problem also appears in the header text of

PRDGRM.FOR. The user can run this problem by selecting

Test Mode and entering 'PRDGRM.TST' as the input file name.

PRDGRM.TST

005 F STD
0.0 0.0
1.0 0.0
2.0 0.0
3.0 0.0
4.0 0.0

68

PRDGRM. OUT

INPUT DATA SOURCEFILE: PRDGRM.TST

VALUE OF N = 5 dsorce -F MAGNITUDE OPTION =STD

INPUT DATA

xnoC

n REAL IMAGINARY
0 .OOOOE+00 .OOOOE+00
1 .1000E+01 ..OOOOE+00
2 .2000E+01 .OOOOE+00
3 .3000E+01 .OOOOE+00
4 .4000E+01 .OOOOE+00

OUTPUT DATA

k Sxx(k)
0 .2000E+02
1 .3618E+01
2 .1382E+01
3 .1382E+01
4 .3618E+01

69

Example # 2

A low-pass filter presented earlier had the transfer

function:
z

H(z) =
z - .5

(D.1)

The impulse response of this filter can be computed

iteratively by the corresponding difference equation:

y(n) = x(n) + .5y(n-l) n = 0, 1, ... , N-i
where: x(n) = 1.0 at n = 0

0.0 otherwise

y(-l) = 0.0

(D.2)

The performance of PRDGRM.FOR can be evaluated by

computing the periodogram of the resulting impulse response

and comparing the results to the frequency response of the

filter. The frequency response was computed previously

using DIGFREQ.FOR and a plot of the frequency response

appears in Appendix A.

The subroutine SAMPLE was used to generate 200 samples

of the filter's impulse response. Included on the page that

follows is a plot of the log periodogram sequence. The

results produced by PRDGRM.FOR as well as those produced by

DIGFREQ.FOR confirm the low-pass nature of the filter. The

disparity of the plots can be attributed somewhat to the

implied rectangular windowing of a finite-length sequence

used as an input to the periodogram algorithm. Because of

this windowing effect, the use of the periodogram as a

spectral estimation technique is somewhat limited.

70

-74

CI!

3c3

IBM

Figure D.l Periodogram of a low-pass filter's impulse

response -Example #2.

71

Example # 3

As a final demonstration of PRDGRM.FOR, the subroutine

SAMPLE was used to generate the input sequence according to

the equation:

x(n) = 2.0cos(2rn500/5000)
(D.3)

The sequence consists of N = 200 samples. Plots of the

input sequence as well as the output sequence are included

on the pages that follow. For this sequence, the frequency

of the continuous-time signal is f = 500 Hz and the sampling

frequency is fs = 5000 Hz. Since 5000 Hz corresponds to 8 =

27r rad, the periodogram should peak at 8 = 7r/5 rad, the

digital frequency that corresponds to f = 500 Hz. To

demonstrate the ability of the program to convert the output

to decibels, the input parameter yscal was assigned the

value: 'LOG'.

An analysis of the plotted output confirms the an-

ticipated results. The signal, consisting of a pure

sinusoid, has a digital frequency of 7r/5 rad when sampled

at 5000 Hz. The plot of the periodogram remains below 0 dB

for all frequencies except 8 = r/5 rad.

72

31C

4C

O ft: S

8-

- di

C

Figure D.2 Input sequence x(ri) =2coS(2vnf500/5
0 0 0)-

Example #3.

73

4004

31C-

igr D. eidga ofasnsi Exml #3

.74

~I
mLO

Opn input
ile.

Read N, dsorce, yscal.

Conduct error checks.1

dsorce- IS' Call SAMPLE to
generate input: xino.

Mode ? nT > Write input data

write input data to files
PRDGRM. OUT and PRtDGRM.DAT.

Call OFT to compute the DFT
xk(DFTx() I

For k -0, N-1.

Sxx(k) =-xk(k)*conjg(xk(Jc))

N

y
0< scal I 'LOG' I Sxx() - l*loqlO(Sxxo)l

N

write results to files

PRDGRM. OUT and PP.DGRN. DAT.

END

Figure D.4 PRDGRM.FOR Software Flowchart.

75

Appendix E

As a demonstration of the capabilities of CONCORDT.FOR

this appendix presents four example problems. Each example

problem demonstrates one of the following computations:

1. Circular convolution.
2. Linear convolution.
3. Circular correlation.
4. Linear correlation.

A brief analysis of the output generated by the program

is included for each problem. The examples that use short

data sequences include tabular listings of the input and

output values. The examples that require longer sequences

include plots of the input and output sequences as generated

by PLOTDAT.FOR. The last pages of this appendix are the

flowcharts of CONCORDT.FOR and the subroutine ZEROPAD.

Flowcharts of subroutines DFT, INVDFT, SAMPLI and SAMPL2 are

not included in this appendix as they have been presented

previously.

The variable names listed below are used in the Fortran

source code of CONCORDT.FOR and in the corresponding

flowcharts.

N1 - The integer value that specifies the number of
complex samples contained in the input sequence
xnl().

N2 - The integer value that specifies the number of
complex samples contained in the innut sequence
xn2().

dsrcel - The character string IF' or 'S' thiat specifies
whether the input se uence xnl() is to be read
from the input file (F) or generated (S)
through use of the subroutine SAMPLI.

76

Q III ,il

dsrce2 - The character string 'F' or IS' that specifies
whether the input sequence xn2() is to be read
from the input file (F) or generated (S)
through use of the subroutine SAMPL2.

option - The character string that specifies the
operation to be performed as follows:

'LCON' = Linear convolution,
'LCOR' = Linear correlation,
'CCON' = Circular convolution,
'CCOR' = Circular correlation.

xnl() - The first complex input sequence of length N1.
xkl() - The sequence containing the DFT values of the

array xnl(), i.e., xkl() = DFT~xnl()].
xn2() - The second complex input sequence of length N2.
xk2() - The sequence containing the DFT values of the

array xn2(), i.e., xk2() = DFT[xn2()].
xn3() - The complex output sequence.
xk3() - The sequence containing the DFT values of the

array xn3(), i.e., xk3() = DFT[xn3()].

77

Example #1

The circular convolution of the two sequences: xnl() =

1 3 5 7] and xn2() = (2 4 1 8] is demonstrated in

this example. The listings that follow include the input

file CONCORDT.IN and the tabular output file CONCORDT.OUT.

The result of the circular convolution of these two

sequences can be easily verified by manually performing the

calculations. Manual calculation results in the sequence

xn3() = [59 57 79 45). This compares favorably with

the computer generated output sequence.

CONCORDT.IN

004 F
004 F CCON
1.0 0.0
3.0 0.0
5.0 0.0
7.0 0.0
2.0 0.0
4.0 0.0
1.0 0.0
8.0 0.0

78

..................

CONCORDT. OUT

INPUT DATA SOURCEFILE: CONCORDT.IN
N1 = 4 dsrcel =F
N2 = 4 dsrce2 =F
option = CCON

INPUT DATA

xnl()
n REAL IMAGINARY
0 .100000E+01 .OOOOOOE+00
1 .300000E+01 .OOOOOOE+00
2 .500000E+01 .OOOOOOE+00
3 .700000E+01 .OOOOOOE+00

xn2 ()
n REAL IMAGINARY
o .200000E+01 .OOOOOOE+00
1 .400000E+01 .OOOOOOE+00
2 .100000E+01 OQOOOOOE+00
3 .800000E+01 .OOOOOOE+00

OUTPUT DATA

n REAL x3) IMAGINARY
o .590000E+02 .190735E-05
1 .570000E+02 .560272E-06
2 .790000E+02 -.855914E-05
3 .450000E+02 .551928E-05

79

Examle#

The next operation to be demonstrated is linear

convolution. For this operation the two input sequences

chosen were: xnl() = [1 2 3 4] and xn2() = [5 4 3

2 1]. As in the first example, the input sequences are

short enough to check the solution via manual calculations.

The listings that follow include both the input file

CONCORDT.TST, as well as the output file CONCORDT.OUT.

Marual calculation of the linear convolution results in the

sequence: xn3() = [5 14 26 40 30 20 11 4]. The output

produced by the program results in the same solution.

This example also appears in the header text of the

program. The user can run this problem by selecting Test

Mode and entering 'CONCORDT.TST' as the name of the input

file.

CONCORDT.TST

004 F
005 F LCON
1.0 0.0
2.0 0.0
3.0 0.0
4.0 0.0
5.0 0.0
4.0 0.0
3.0 0.0
2.0 0.0
1.0 0.0

80

CONCORDT.OUT

INPUT DATA SOURCEFILE: CONCORDT.TST
INT1= 4 dsrcel =F
N2 = 5 dsrce2 =F
option = LCON

INPUT DATA

xnl C)
n REAL IMAGINARY
0 .100000E+01 .OOOOOOE+00
1 .200000E+01 .OOOOOOE+00
2 .300000E+01 .OOOOOOE+00
3 .400000E+01 .OOOOOOE+00

n REAL IMAGINARY
o .500000E+01 .OOOOOOE+00
1 .400000E+01 .OOOOOOE+00
2 .300000E+01 OQOOOOOE+00
3 .200000E+01 .OOOOOOE+O0
4 .100000E+01 .OOOOOOE+00

OUTPUT DATA

xn3 C)
n REAL IMAGINARY
o .500000E+01 .953*74E-06
1 .140000E+02 -. 303457E-05
2 .260000E+02 -. 756009E-05
3 .400000E+02 -. 404610E-05
4 .300000E+02 .217716E-05
5 .200000E+02 .762858E-05
6 .110000E+02 .892130E-05
7 .400001E+01 .472045E-05

82.

Example #3

Using the same sequences that were used in Example #1,

this example problem demonstrates the circular correlation

operation. The input sequences are repeated here for ease

of analysis: xnl() = [1 3 5 7) and xn2() = [2 4 1

8]. A listing of the tabular output file CONCORDT.OUT is

included on the page that follows. The result of performing

the calculations manually is the sequence xn3() = [75 61 63

41). This compares favorably with the solution generated

by the program.

82

CONCORDT.OUT

INPUT DATA SOURCEFILE: CONCORDT.IN
N1 = 4 dsrcel =F
N2 = 4 dsrce2= F
option = CCOR

INPUT DATA

xnl()
n REAL IMAGINARY
0 .100000E+01 .OOOOOOE+00
1 .300000E+01 .OOOOOOE+00
2 .500000E+01 .OOOOOOE+00
3 .700000E+01 .OOOOOOE+00

xn2 ()
n REAL IMAGINARY
o .200000E+01 .OOOOOOE+00
1 .400000E+01 .OOOOOOE+00
2 .100000E+01 .OOOOOOE+00
3 .800000E+01 .OOOOOOE+00

OUTPUT DATA

xn3()
n REAL IMAGINARY
0 .750000E+02 .OOOOOOE+00
1 .610000E+02 -. 108481E-05
2 .630000E+02 .126364E-05
3 .410000E+02 -. 480426E-05

83

Example #4

This final example problem demonstrates the linear

correlation computation. The sequence xnl() consists of 128

samples of the unit step function and the sequence xn2()

consists of 128 samples of a square wave. The goal is to

compute the linear correlation of the two sequences i.e., the

sequence: R() . Plots of the two input sequences,
xnlxn2

xnl() and xn2(), as well as the output sequence R() are

provided on the pages that follow. Manual calculation of the

solution to this problem is somewhat impractical. However,

the plotted data allows the user to verify that the results are

correct through graphical analysis. The wraparound

phenomenon discussed in Chapter III is evident from the plot

of the output sequence. The actual non-zero values for the

linear correlation of these two input sequences, as they are

defined in this problem, consists of the computed output

sequence truncated at sample n = 127.

The linear correlation of two real sequences results in a

sequence that is also real. Figure E.4 is a plot of the

imaginary part of the output sequence for this example

problem. These non-zero values result from the use of

single-precision computations as part of the DFT algorithm.

Since the user will experience similar results, the plot of the

imaginary values is include(. in this analysis.

84

30C

Co

Co

-P

MW !
=C

rnan

Figure E.1 Input sequence xnl(n) -Example #4.

85

g311t

M

31

4M
on- 4081

GM_ _ _ __ _ _ _ _

a-o

opu 4W ., or
0.. -%

Figure E.2 Input sequence xn2(n) -Example #4.

86

31C

U.,

9

.

asm

Ca

'CC

C

Figure E.3 The result of linear correlation (real part)-
Example #4.

87

C;;6
C"! -i a 4 ,%

M Clic~i Ci 06

CWD

31C4

Figue E Th reultof iner crreatin (magnar

part) Examle #4

88-

Conduat aiic~ce

Oftl O U onto cen

Write~~~w~at inputt t utu ei.

option Is ? call SIUROA to xte
19the input .e=ce0 1

!eqt tile.
5 -2

Nccou' o

cadl ?n t. wrimpIpute:t

c <l ao

t mon to screen.

/writeca input! tot toomtptute:s

Figure OU and CONCORDT.FO otaeFocat

89R o

AA14656 A COMPUTER PROGRAM PACKAGE FOR INTRODUCTORY 2/14
ONE-DIMENSIONAL DIGITAL SIGNAL PROCESSING APPLICATIONS
(U) NAVAL POSTGRADUATE SCHOOL MONTEREY CA F E HUDIK

MAR S
F/ 12/5 N

mmhhmmhhhl
EhEmomhhhmmoEEI

Q I 1 2.2

Li

S1.25 1. 4 - 1J.6

>For i =N, N3 -l

xn(i) =cmplx(Q.O,O.O)

Figure E.6 ZEROPAD Subroutine Flowchart.

90

Appendix F

The program FFT.FOR computes either the FFT or the IFFT

of a complex sequence of input data. This appendix contains

an example problem that demonstrates each of these computa-

tions. The final pages of this appendix are the software

flowcharts of the main program FFT.FOR and the subroutines

FFT, INVFFT, and REVERSAL.

Development of the FFT algorithm is somewhat involved

and in any case beyond the scope of this report. However,

in order to make the software flowcharts and corresponding

Fortran source code more understandable, the following

synopsis pertains to the FFT algorithm as developed in

Chapter 8 of Reference 1 and implemented by this program.

The variable names used throughout correspond precisely to

those presented in the reference.

The FFT computation for a sequence of length N = 2m

values is broken up into m stages. Each stage consists of

N/2 two-point DFT computations called 'butterflies'. In an

effort to increase the computational efficiency of the

algorithm, each butterfly occurring within a given stage and

requiring use of the same weighting factor (W = e-j27r/N) is

computed in a single loop, thus eliminating the requirement

to recompute the weighting factor for each consecutive

butterfly. The addresses (array indices) of the two values

that participate in a butterfly computation are assigned the

values: itop and ibot. The value corresponding to the

91

S

separation between these indices is the value iwidth, i.e.,

iwidth = ibot - itop. The tradeoff of grouping the

butterfly computations by their weighting factors is the

determination of the correct participants for each butterfly

in the group. The program determines the addresses of these

participants through use of the values itop, ibot and

iwidth. The efficiency gained by grouping the butterflies

according to their weighting factors is a function of the

number of values (N) comprising the input sequence.

The listing below further explains the function of the

individual variables as they appear in the software.

m - The integer value that specifies the number of
complex samples contained in the input
sequence, i.e., N = 2m .

dsorce - The character string 'F' or 'S' that specifies
whether the input sequence xtmp() is to be read
from the input file (F) or generated (S)
through use of the subroutine SAMPLE.

option - The character string 'FFT' or 'INV' that
specifies the computation to be performed.

xtmp() - The complex input sequence of length N.
x() - The array containing the original input

sequence but in bit-reversed order. After the
subroutine FFT or INVFFT is called, this array
contains the results of the FFT/IFFT computa-
tion in rectangular form, i.e., (real,
imaginary).

xmag() - The array containing the magnitude values of
the output sequence.

xph() - The array containing the phase (degrees) values
of the output sequence.

L - The integer value corresponding to the stage
being computed.

iwidth - The integer value corresponding to the address
separation of the participants in a butterfly
computation.

itop - The integer value corresponding to the array
index of the first participant in a butterfly
computation.

92

ibot - The integer value corresponding to the array
index of the second participant in a butterfly
computation.

ispace - The integer value corresponding to the address
separation between first participants in
consecutive butterflies.

r - The value corresponding to the index of the
weighting factor.

W - The complex weighting factor W = ej2 r/N
involved in each butterfly computation.

maddr - The integer value corresponding to the original
address of the elements of the input sequence.

newaddr - The integer value corresponding to the new
address assigned as a result of the bit-
reversal algorithm.

93

Exam~le #1

This example demonstrates both the FFT and the IFFT

computations. The input sequence consists of N = 8 (m = 3)

samples of the real sequence xtmp() = [0 1 2 3 4 0 0

0]. The imaginary part of each sample is assigned the

value 0. Included on the page that follows are listings of

the input file FFT.TST required to run this example problem,

as well as the tabular output file FFT.OUT. In order to

reproduce the oricinal input sequence, the FFT results of

the sequence were input to the program on a second run and

the IFFT of this sequence was computed. Listings of the

input and output files corresponding to this second run are

also included.

This example problem is also developed in the header

text of FFT.FOR and can be run by the user in Test Mode by

using the data prestored in the input file FFT.TST.

94

3 F FFT
0.0 0.0
1.0 0.0
2.0 0.0
3.0 0.0
4.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0

FFT. OUT

INPUT DATA SOURCEFILE: FFT.TST
VALUE OF m = 3 VALUE OF N (2**M) = 8
dsorce = F option = FFT

INPUT DATA INPUT DATA
(BIT-REVERSED ORDER)

SAMPLE # REAL IMA GINARY REAL IMAGINARY
o .000000E+00 .0000001+00 .000000E+00 .0000001+00
1 .100000E+01 .0000001+00 .400000E+01 .000000E+00
2 .200000E+01 OO00O00E+00 .200000E+01. 000000E+00
3 .300000E+01. .000000+00 O0000001+00 .000000Z+00
4 .400000E+01 .OOOOOOE+00 .100000E+01 .0000002+00
5 O000000E+00 O0000OO1+00 .0000001+00 .000000Z+00
6 .OOOOOOE+00 O0000001+00 .300000E+01 .000000Z+00
7 .OOOOOOE+00 0000O0E+00 .OOOOOOE+00 .0000001+00

OUTPUT DATA

SAMPLE # REAL IMAGINARY MAGNITUDE PHASE
(DEGREES)0 .100000E+02 .0000001+00 .100000E+02 .000000E+00

1 -.541421E+01 -.482843E+01 .725448E+01 -.1382731+03
2 .200000E+01 .200000E+01 .282843E+01. .450000E+02
3 -.258579E+0. -.828427E+00 .271525E+01 -.162236E+03
4 .200000E+01 .0000001+00 .200000E+01 O0000001+00
5 -.258579E+01 .828427E+00 .271525E+01 .162236E+03
6 .2000001+01 -.2000001+01 .2828431+01 -.450000E+02
7 -.541421E+01. .482843E+01 .725448E+01 .138273E+03

95

FFTLINi

3 F INV
10.0 0.0
-5.41421 -4.82843
2.0 2.0
-2.58579 -. 828427
2.0 0.0
-2.58579 .828427
2.0 -2.0
-5.41421 4.82843

FFT.OUT

INPUT DATA SOURCEFILE: FFT.IN
VALUE OF m = 3 VALUE OF N (2**m) = 8
dsorce = F option = INV

INPUT DATA INPUT DATA
(BIT-REVERSED ORDER)

SAMPLE # REAL IMAGINARY REAL IMAGINARY
a .100000E+02 .OOOOOOE+00 .100000E+02 .OOOOOOE+00
1 -. 541421E+01 -. 482843E+01 .200000E+01 .OOOOOOE+00
2 .200000E+01 .200000E+01 .200000E+01 .200000E+01
3 -. 258579E+01 -. 828427E+00 .200000E+01 -. 200000E+01
4 .200000E+01. OOOOOOE+00 -. 541421E+01 -. 482843E+01
5 -. 258579E+01 .828427E+00 -. 258579E+01 .828427E+00
6 .200000E+01 -. 200000E+01. -. 258579E+01 -. 828427E+00
7 -. 541421E+01 .482843E+01 -. 541421E+01 .482843E+01

OUTPUT DATA

SAMPLE # REAL IMAGINARY MAGNITUDE PHASE
(DEGREES)

o .OOOOOOE+00 .OOOOOOE+00 .OOOOOOE+00 .OOOOOOE+00
1 .100000E+01 -.782270E-09 .100000E+01 -.448207E-07
2 .200000E+01 .437114E-07 .200000E+01 .125224E-05
3 .300000E+01 .218557E-07 .300000E+01 .417413E-06
4 .400000E+01 .OOOOOOE+00 .400000E+01 .OOOOOOE+00
5 -. 172853E-05 -. 429291E-07 .172907E-05 -. 178577E+03
6 -. 8S34465E-06 -. 437114E-07 .835609E-06 -. 177001E+03
7 .715256E-06 .218557E-07 .715590E-06 .175021E+01

96

open input tile.

Read m, doarca, option./

Conduct error checks.

.:dsorce ?
~ S >~ APEt

generate input: xtmpo.

Mode > Write input data
+ onto monitor screen.

thoeut tnpe sequnce
X()) <- IWTpx).

FFTOUTandFFT.AT

Call~cmpt the tocopueth Fr
X() - FFT(x(fl.

FFIT I

> IFor L =1, M.

ispace =2**L

>[For j =0, iwidth-1.

r = s*j

* = 5-j2,rr/N

> [For itop =j, N-2, ispace.

ibot =itop + iwidth
tmp =x(ibot)*W

x(ibot) = x(itop) - tmp

x(itop) = x(itop) + tmp

Figure F.2 FFT Subroutine Flow Chart.

98

II

Conjugate each xtmp(i).

FCall FFT to compute the FFT:

xtmp(FFT[xtmpofl.

>For i = 0, N-1.

Conjugate each xtmp(i).

Figure F.3 INVFFT Subroutine Flowchart.

99

> For I=0, rn-i.

lrrnndr - rnod(raddr,2)
newaddr =newaddr+lrrnndr*2**(rn-i-i)

Figure F.4 REVERSAL Suroutine Flowchart.

Appendix G

The four computations that CONCORFT.FOR is capable of
performing are demonstrated by the example problems included

in this appendix. CONCORFT.FOR, like the other problem

solving programs, generates an output file (CONCOR.DAT) that

contains a listing of the input sequence(s), as well as the

output sequence in a form suitable for plotting. Example #4

of this appendix includes plots of the input and output

sequences used for that problem. The plots were produced by

the program PLOTDAT.FOR. The final pages of this appendix

are a flowchart of CONCORFT.FOR. Flowcharts of the six

subroutines called by CONCORFT.FOR are not included in this

appendix as each was presented previously.

The variable names listed below are used in the Fortran

source code of CONCORFT.FOR and in the corresponding

flowcharts.

N1 - The integer value that specifies the number of
complex samples contained in the input sequence
xnl().

N2 - The integer value that specifies the number of
complex samples contained in the input sequence
xn2().

dsrcel - The character string 'F' or 'S' that specifies
whether the input sequence xnl() is to be read
from the input file (F) or generated (S)
through use of the subroutine SAMPL1.

dsrce2 - The character string 'F' or 'S' that specifies
whether the input sequence xn2() is to be read
from the input file (F) or generated (S)
through use of the subroutine SAMPL2.

option - The character string that specifies the
operation to be performed as follows:

'LCON' = Linear convolution,
'LCOR' = Linear correlation,

101

I1

'CCON' = Circular convolution,
'CCOR' = Circular correlation.

xnl() - The first complex input sequence of length Nl.
xtmpl() - A dummy array used for computations involving

the array xnl().
xn2() - The second complex input sequence of length N2.

xtmp2() - A dummy array used for computations involving
the array xn2().

xn3() - The complex output sequence.
xtmp3() - A dummy array used for computations involving

the array xn3().

102

ip rb4 ' '; 9 ~

Example #1

This example demonstrates the circular convolution

operation. The input sequences consist of the following

real values: xnl() = [1 3 5 7] and xn2() = [2 4 1

8]. The result of manually calculating the circular

convolution of these two sequences is the sequence: xn3() =

[59 57 79 45]. The listings that follow include the

input file CONCORFT.IN, required to run this problem, and

the tabular output file CONCORFT.OUT containing the computed

results. As can be seen from the listing of CONCORFT.OUT,

the computation produced the anticipated results.

CONCORFT.IN

004 F
004 F CCON
1.0 0.0
3.0 0.0
5.0 0.0
7.0 0.0
2.0 0.0
4.0 0.0
1.0 0.0
8.0 0.0

103

LIU

CONCORFT.OUT

INPUT DATA SOURCEFILE: CONCORFT.IN
N1 = 4 dsrcel =F N2= 4 dsrce2=F
option =CCON

INPUT DATA

xnl()
n REAL IMAGINARY
0 .100000E+01 .OOOOOOE+00
1 .300000E+01 .OOOOOOE+00
2 .500000E+01 .OOOOOOE+00
3 .700000E+01 .OOOOOOE+00

xn2 ()
n REAL IMAGINARY
o .200000E+01 .OOOOOOE+00
1 .400000E+01 .OOOOOOE+00
2 .100000E+01 .OOOOOOE+00
3 .800000E+01 .OOOOOOE+00

OUTPUT DATA

xn3 ()
n REAL IMAGINARY
o .590000E+02 .715256E-06
1 .570000E+02 .262268E-06
2 .790000E+02 -. 715256E-06
3 .450000E+02 -.262268E-06

104

Example #2

This example problem is developed in the header text of

CONCORFT.FOR and can be run by the user by selecting Test

Mode and using the input data prestored in the file

CONCORFT.TST. The goal of this example is to compute the

linear convolution of the two sequences: xnl() = (1 1 1

1] and xn2() = [2 2 2 2 2]. The sequence that should

result from the operation is: xn3() = [2 4 6 8 8 6 4

2]. A listing of the input file CONCORFT.TST required to

run this problem appears below.

CONCORFT.TST

004 F
005 F LCON
1.0 0.0
1.0 0.0
1.0 0.0
1.0 0.0
2.0 0.0
2.0 0.0
2.0 0.0
2.0 0.0
2.0 0.0

A listing of the tabular output file CONCORFT.OUT is

included on the page that follows. The computed output

sequence compares favorably with the anticipated result.

105

CONCORFT .OUT

INPUT DATA SOURCEFILE: CONCORFT.TST
N1 = 4 dsrcel =F N2= 5 dsrce2 F
option =LCON

INPUT DATA

xnl()
n REAL IMAGINARY
0 .100000E+01 .000000E+00
1 .100000E+01 .OOOOOOE+00
2 .100000E+01 .OOOO0OE+00
3 .100000E+01 .OOOOOOE+00

xn2 C)
n REAL IMAGINARY
o ."00000E+O1 .OOOOOOE+00
1 .200000E+01 .OOOOOOE+00
2 .200000E+01 .000000E+00
3 .200000E+01 .OOOOOOE+00
4 .200000E+01 .OOOOOOE+00

OUTPUT DATA

xn3 C)
n REAL IMAGINARY
o .200000E+01 .894070E-07
1 .400000E+01 -.421468E-07
2 .600000E+01 -.754979E-07
3 .800000E+01 -.168587E-06
4 .800000E+01 -.894070E-07
5 .600000E+01 .421468E-07
6 .400000E+01 .754979E-07
7 .200000E+01 .168587E-06

106

Using the same input sequences as Example #1, the

circular correlation operation is demonstrated by this

problem. The input sequences are: xnl() =[1 3 5 7]

and xn2(= 2 4 1 8]. For this computation, the

anticipated result is the sequence: xn3(= [75 61 63

41]. A listing of the tabular output f ile is included

below. The computed output sequence, xn3(), compares

favorably with the anticipated result.

CONCORFT.OUT

INPUT DATA SOURCEFILE: CONCORFT.IN
N1 = 4 dsrcel =F N2= 4 dsrce2=F
option =CCOR

INPUT DATA

xnl()
n REAL IMAGINARY
0 .100000E+01 .OOOOOOE+00
1 .300000E+01 .OOOOOOE+00
2 .500000E+01 .OOOOOOE+00
3 .700000E+01 .OOOOOOE+00

xn2 C)
n REAL IMAGINARY
o .200000E+01 .OOOOOOE+00
1 .400000E+01 .OOOOOOE+00
2 .100000E+01 .OOOOOOE+00
3 .800000E+01 .OOOOOOE+00

OUTPUT DATA

xn3()
n REAL IMAGINARY
0 .750000E+02 .OOOOOOE+00
1 .610000E+02 .198695E-06
2 .630000E+02 .OOOOOOE+OO
3 .410000E+02 -. 198695E-06

107

Example #4

This example problem demonstrates the linear correla-

tion computation. The sequence xnl() consists of 128

samples of the unit step function and the sequence xn2()

consists of 128 samples of a square wave. The goal is to

compute the linear correlation of the two sequences, i.e.,

the sequence: R() . Plots of the two input sequences,
xnlxn2

xnl() and xn2(), as well as the output sequence R() are

provided on the pages that follow. As discussed previously

(Example #4 of Appendix E), wraparound of the output

sequence is produced by the program due to the zero padding

required by use of the DFT technique. The wraparound

results in non-zero values of the output sequence in the

interval: 128 to 254. The plot of the output sequence

clearly shows the wraparound phenomenon.

Example #4 of Appendix E also discussed the non-zero

imaginary output values that are produced by the program

CONCORDT.FOR when correlating two real input sequences. As

exhibited by Figure G.4, CONCORFT.FOR produces similar

results. The non-zero values are attributed to the single

precision FFT algorithm used in the correlation computation.

108

=C=

W-

1094

311

0%110

MIDID

ism
31-

FiueG3Tereut-flna corlto (ral at
Exmpe 4

W--I

pat - xape44

a11

11,11 MS,1 1 IMM M

; onduct
error

h c s

geante nut. =2(ee.

4

/Wit, input data to output films
CW=CR1T.OT amd OUUORfl. OAT.

L=Rl or

option - Call MfOPAO to extend
tae input sequences to
iaths

:CM. or *3 202 Xea 1 ya .

Call RXUYAL to reoder the
sequences ina bit-roeede aider:
xtupl() - u1()
xtspa() 4- 2)

call ?rr to amue
Xt~ IO 'M FFI-topL(fI

on2(- ? 0 M-L.OI

uCM('-3() xml L L

Call UWVMIT to zespt gth

/Write results to tiles:
cONCORT.0 OA Md~ CORPT. OMT.

Figure G.5 CONCORFTFOR Software Flowchart.

113

ARpendix H

The program CONCOR.FOR will compute either the linear

convolution or the linear correlation of two sequences of

input data, depending on the option selected by the user.

This appendix includes two example problems, each of which

demonstrates one of these computations. The last pages of

this appendix are the flowcharts that describe CONCOR.FOR

and the subroutines CONVOL and CORREL.

The variable names listed below are used in the Fortran

source code of CONCOR.FOR and in the corresponding flow-

charts.

option - The character string that specifies the
operation to be performed as follows:

'LCON' = Linear convolution,
'LCOR' = Linear correlation.

nsl - The integer value denoting the starting point of
xnl().

nel - The integer value denoting the ending point of
xnl().

dsrcel - The character string 'F' or 'S' that specifies
whether the input sequence xnl() is to be read
from the input file (F) or generated (S) through
use of the subroutine SAMPLI.

ns2 - The integer value denoting the starting point of
xn2().

ne2 - The integer value denoting the ending point of
xn2 () .

dsrce2 - The character string 'F' or 'S' that specifies
whether the input sequence xn2() is to be read
from the input file (F) or generated (S) through
use of the subroutine SAMPL2.

xnl() - The first input sequence of length N1 = nel-
nsl + 1.

xn2() - The second input sequence of length N2 = ne2-
ns2 + 1.

yn() - The output sequence of length N3 = N1 + N2 - 1
produced if option = 'LCON'.

ns3 - The integer value corresponding to the starting
point of the output sequence.

114

ne3 - The integer value corresponding to the ending
point of the output sequence.

R() - The output sequence of length N3 = ne3 - ns3 +
1 produced if option = 'LCOR'.

L?
115

w N

Example #1

The first computation to be demonstrated is the linear

convolution of the two sequences: xnl(n) = [1 1 1 1]

for -3 n 5 0 (nsl = -3, nel = 0) and xn2(n) = [1 2 3

4 5] for 0 : n 4 (ns2 = 0, ne2 = 4). To run this

example problem the input file CONCOR.TST was created. A

listing of this file appears below.

CONCOR.TST

LCON
-3 0000 F

0000 0004 F
1.0
1.0
1.0
1.0
1.0
2.0
3.0
4.0
5.0

This example is also developed in the header text of

CONCOR.FOR and can be run by the user in Test Mode by

specifying the input file CONCOR.TST. The computed output,

as it appears in the file CONCOR.OUT, is included on the

page that follows. In addition to the tabulated data, plots

of the input and output sequences are also included. The

plotting program PLOTDAT.FOR will not attempt to connect the

plotted values of sequences consisting of less than 25

points. Instead, the symbol '+' is placed on the plot at

116

the appropriate locations. This example problem was chosen

to demonstrate this feature of PLOTDAT.FOR.

The result of manually calculating the linear convolu-

tion of the two input sequences is the sequence: yn()=

3 6 10 14 12 9 5).This compares favorably with the

computer generated results.

CONCOR. OUT

INPUT DATA SOURCEFILE: CONCOR.TST
nsl = -3 nel = 0 dsrcel =F
ns2 = 0 ne2 = 4 dsrce2= F
option = LCON

INPUT DATA

n xnl(n)

-3 .100000E+01
-2 .100000E+01
-1 .100000E+01
0 .100000E+01

n xn2(n)

0 .100000E+01
1 .200000E+01
2 .300000E+01
3 .400000E+01
4 .500000E+01

OUTPUT DATA

n yn(n)

-3 .100000E+01
-2 .300000E+01
-1 .600000E+01
0 .100000E+02
1 .140000E+02
2 .120000E+02
3 .900000E+01
4 .500000E+01

117

3o

311

all=
Co ~~~ M-l Ci

31C 21

FiueH1Iptsqenex1n xml 1

E118

,311 ---

-S0.

N-4-

II

Figure H.2 Input sequence xn2(n) -Example #1.

119

W-4-

0 --

Fiur H. Th-euto iercnvlto xml 1

120S

Example #2

This example demonstrates the linear correlation option.

The input sequences chosen are identical to those used in

Example #4 of Appendix E. The input sequence xnl() consists

of N1 = 128 values of the unit step function, and the input

sequence xn2() consists of N2 = 128 values of a square wave.

Plots of the input sequences, as well as the output

sequence, appear on the pages that follow. The results of

the correlation operation, as produced by CONCOR.FOR, are

similar to those produced by CONCORDT.FOR and CONCORFT.FOR.

However, as the plots indicate, the wraparound phenomenon

exhibited previously does not occur when the sequences are

linearly correlated in the time domain.

12

I 121

!IM

-coo

CS

CM M-

Co

FiueH nutsqec n(n xml 2
- 122

Z4nfw-

uC t

CS

Go

CQ-

w _____ ___L%_

ISM IQW, M

MCW

CSU

V. U- qr C

Figur H.6The esul of lnearcorrlatin Exme#2

12

open input file.

Read option.
Read not. nel, darcel.
Read ns2, n*2, dorc02.

Conduct error checks.i

- generate input: 1n2) I.

111 - e2 - 5 Call SA+ 1
112qneet inut xe2 2ns *

nosriT]rte input datato il:

COPCUR. OUT and CONCOR. MT.

Call~~t CORostoutmut

linearconrreltion.

Figure H.7 CONCOR.FOR Software Flowchart.

125

j 0

> For n = ns3, ne3.

> For i= j, 0, -1.

N

.........

j j +1

Figure H.8 CONVOL Subroutine Flowchart.

126

> For p =ns3, ne3.l

R~p =R~) x~ndexl)*xn(inex2

Fiur H9 ORELSurotie lochrt

1de 27ne

Appendix I

The iterative solution to an LTI difference equation is

rather straight-forward. If the equation consists of only a

few terms, several iterations can be computed by hand

calculations. A more complex equation requires a solution

derived by an analytical approach or through use of a

recursive algorithm. DIFFEQ.FOR provides a recursive means

of computing the output sequence y(ns) when provided with

the input sequence x(ns) and the initial conditions of the

system. This appendix includes the flowcharts of DIFFEQ.FOR

and the subroutine DIFFEQ. Additionally, two example

problems are developed which demonstrate the capabilities of

DIFFEQ.FOR.

The variable names listed below are used in the Fortran

source code of DIFFEQ.FOR and in the corresponding flow-

charts.

numsys - The integer value that specifies the number of
difference equations in the form of Equation
(3.9) that are to be solved. For each
difference equation, the input parameters
described below must be provided by the user.

L - The integer value denoting the maximum number
of delays occurring in the input sequence x().

N - The integer value denoting the maximum number
of delays occurring in the output sequence yo).

nstop - The integer value corresponding to the largest
tim . index for which the sequence y() is to be
solved.

xsorce - The character string 'F' or 'S' that specifies
whether the input sequence x() is to be read
from the input file (F) or generated (S)
through use of the subroutine XGEN.

b() - The coefficients of the input sequence cor-
responding to Equation (3.9).

128

a() - The coefficients of the output sequence
corresponding to Equation (3.9).

y() - The output sequence of length: N + nstop + 1.
The initial condition sequence y(-N) ...y(-l)
must be provided by the user if N > 0. The
remaining values in the sequence y(O)...y(ns-
top) are computed by the program.

x() - The input sequence of length: nstop + 1.
ns - The time index of both the input sequence and

the output sequence.
nprob - The integer value corresponding to the dif-

ference equation being solved.

129

Example #1

The first example involves the solution of the difference

equation:

y(ns) = 1.2*y(ns-1) + 1.5*x(ns)

Given: y(-l) = 25.0

x(ns) = 100.0 for 0 ns nstop
(I.1)

The goal is to compute the solution to this difference

equation for values of ns in the range: 0 : ns 5 10. Listed

below is the input file DIFFEQ.TST required to run this

problem:

DIFFEO.TST

1
000 001 010 F
1.5
1.2
25.0
100.0 100.0 100.0 100.0 100.0 100.0
100.0 100.0 100.0 100.0

130

Included on the page that follows is a listing of the

computed solution as it appears in the file DIFFEQ.OUT. The

manual computation of y(ns) for the first few values of ns

yields the sequence y(ns) = [25 180 366 589.2 ...]. As

can be seen from the tabular output, the solution was

correctly computed for these values of ns. Continuing with a

more analytical approach, the solution to this difference

equation can be found for any value of ns 2 0 with the aid

of the geometric sum equation. The solution, after some

manipulation, is:

1.0 - 1 .2 ns+l
y(ns) = 2 5 .0,1.2 ns+l + 150.0* for ns - 0

- 0.2
(1.2)

For example:

1.0 - 1.211
y(10) = 25.0*1.211 + 150.0* = 5008.315

~-0.2
(1.3)

To an accuracy of two decimal places the computed solution

matches the analytical solution.

This example problem is also developed in the header

text of DIFFEQ.FOR and can be run by the user in Test Mode

by using the prestored data found in the input file

DIFFEQ.TST.

131

DIFFEO. OUT

INPUT DATA FOR PROBLEM # 1

PROBLEM # 1 INPUT DATA SOURCEFILE: DIFFEQ.TST
THE NUMBER OF INPUT DELAYS: L = 0
THE NUMBER OF OUTPUT DELAYS: N = 1
THE VALUE OF ristop IS: 10
THE COEFFICIENTS b(0), b(1), ... ,f b(L) ARE:

.150000E+01

THE COEFFICIENTS a(l), ... , a(N) ARE:

* 120000E+01

OUTPUT DATA FOR PROBLEM # 1

ns x(ns) y(ns)
-1 .OOOOOOE+00 .250000E+02
0 .100000E+03 .180000E+03
1 .100000E+03 .366000E+03
2 .100000E+03 .589200E+03
3 .100000E+03 .857040E+03
4 .100000E+03 .117845E+04
5 .100000E+03 .156414E+04
6 .100000E+03 .202697E+04
7 .100000E+03 .258236E+04
8 .100000E+03 .324883E+04
9 .100000E+03 .404860E+04

10 .100000E+03 .500832E+04

-------- END OF PROBLEM #1 --------

132

R________________

Example #2

This second example requires the solution to the

difference equation:

y(ns) = 0.95*y(ns-1) - 0.9025*y(ns-2) + x(ns) - .475*x(ns-l)

(1.4)

Given: y(-2) = y(-l) = 0.0

x(ns) = 1.0 for ns = 0

0.0 otherwise

The system described by this difference equation corresponds

to the transfer function:

y(z) 1.0 - .475*z- _
H(z) =----

x(z) 1.0 - 0.95z-1 + 0.9025z - 2

(1.5)

With the aid of the Inverse z-Transform Formula, the

analytical solution of this example problem is found to be:

y(ns) = 0 .9 5 ns * cos(w*ns/3.0) for ns > 0

(1.6)

The next page of this appendix is a plot of the output

sequence for values of ns in the range: 0 < ns 5 80. The

plot clearly shows both the decaying envelope of the

sequence, as well as the constant frequency sinusoid.

133

Cin

FiueI1Sse otu xml 2

134*~

Opn input file.
R.ad num7y.

ror nprob - 1,natop.

Read L, N, natop, xsorce.

Conduct ero hcs

/For k -0, L
Read b~k).

/ed -7k .O a7 ZFQDT

Call c -IFZ to' couputeGZKto X

the~eert itentvesouton

Fiue . DFE.FRSotae lwcat

l~ead O fro 135e

moe? ET jri.-nujdt

> IFor ns =0, nstop.

> For k =0, max(N,L).

y(ns) =y(ris) + a(k)*y(ns-k) + b(k)*x(ns-k)

Figure 1.3 DIFFEQ Subroutine Flowchart.

136

Appendix J

Included in this appendix are two example problems that

demonstrate the capabilities of the program STATEQ.FOR.

The final pages of this appendix are the software flowcharts

of the main program STATEQ.FOR and the subroutine ITRATE.

Listed below are the names of the variables used throughout

the flowcharts and the corresponding Fortran source code.

N - An integer value that specifies the number of
system states.

M - An integer value that specifies the number of
system inputs.

Q - An integer value that specifies the number of
system outputs.

nstop - The integer value corresponding to the largest
time index for which the system of state
equations is to be solved.

xsorce - The character string 'F' or 'S' that specifies
whether the input sequence xs() is to be read
from the input file (F) or generated (S)
through use of the subroutine XGEN.

A - An N x N matrix of state coefficients as they
occur in Equation (3.10).

B - An N x M matrix of input coefficients as they
occur in Equation (3.10).

C - A Q x N matrix of output coefficients as they
occur in Equation (3.11).

D - A Q x M matrix of input coefficients as they
occur in Equation (3.11).

v() - An N x 1 vector consisting of values that
describe the initial condition of the system.

ns - An integer value denoting the time index.
xs(i,ns) - An M x (nstop+l) array consisting of the input

sequence(s). The index i denotes the input
number (1, ..., M), and the index ns denotes the
sample number (0, 1, ..., nstop).

vs(i,ns) - An N x (nstop+l) array consisting of the
state(s) of the system. The index i denotes the
state (1, ..., Q), and the index ns denotes the
sample number (0, 1, ..., nstop).

ys(i,ns) - A Q x (nstop+l) array consisting of the output
sequence(s). The index i denotes the output
number (1, ... , Q), and the index ns denotes the
sample number (0, 1, ..., nstop).

137

xi - A dummy variable that stores the weighted
cumulative contribution of the input sequen-
ce(s) for each value of ns.

138

A A ,

Example #1

This first example problem demonstrates the iterative

solution to the state equations:

v(ns+l)--[0.0 -1.0] v(ns) + [1:0] x(ns)

(J.l)

y(ns) = [1.0 -1.0] v(ns) + [1.0] x(ns)

(J.2)

The initial condition vector is:

v(0) = [-5.0]

(J.3)

The input vector is:

x(ns) = 1 10.0] for 0 5 ns 5 3
(J.4)

The goal of this problem is to compute the solution to the

given system of equations for values of ns in the range: 0 5

ns < 3. This example problem also appears in the header

text of STATEQ.FOR and can be run by the user in Test

Mode by using the input data prestored in the file

STATEQ.TST. A listing of STATEQ.TST appears below.

139

STATEO. TST

02 1
03 F
0.0 -1.0
1.0 0.0
1.0
0.0
1.0 -1.0
1.0
5.0 -5.0
10.0
10.0
10.0
10.0

Manual calculation of the solution to this problem yields

the following sequences:

vl(ns) = [5.0 15.0 5.0 -5.0]
(J.5),

v2(ns) = [-5.0 5.0 15.0 5.0]
(J.6)

yl(ns) = [20.0 20.0 0.0 0.0]
(J.7)

A listing of the tabular output file STATEQ.OUT follows. As

the tabular output indicates, the sequences were correctly

computed over the specified range of ns.

140

STATEO. OUT

INPUT PARAMETERS:

INPUT DATA SOURCE FILE: STATEQ.TST
THE NUMBER OF STATES IS: N = 2
THE NUMBER OF SYSTEM INPUTS IS: M 1
THE NUMBER OF SYSTEM OUTPUTS IS: Q =1

THE VALUE OF nstop IS: nstop = 3
THE VALUE FOR xsorce IS: F

THE MATRIX A(i,j) IS:

* OOOOE+OO -. 1000E+01
.1000E+01 *OOOOE+00

THE MATRIX B(i,j) IS:

.1000E+01
OOOOE+00

THE MATRIX C(i,j) IS:

.1000E+01 -.1000E+01

THE MATRIX D(i,j) IS:

.1000E+01

THE INITIAL CONDITION OF THE STATE VECTOR IS:

v1 = .500000E+01
v2 = -. 500000E+01

141

OUTPUT DATA:

FOR ns =0 THE STATE OF THE SYSTEM IS:
THE VECTOR x is:

xl = .100000E+02
THE VECTOR v is:

vi = .500000E+01
v2 = -. 500000E+01

THE VECTOR y is:
yl = .200000E+02

FOR ns = 1 THE STATE OF THE SYSTEM IS:
THE VECTOR x is:

xl = .100000E+02
THE VECTOR v is:

vi = .150000E+02
v2 = .500000E+01

THE VECTOR y is:
yl = .200000E+02

FOR ns = 2 THE STATE OF THE SYSTEM IS:
THE VECTOR x is:

xl = .100000E+02
THE VECTOR v is:

vi = .500000E+01
v2 = .150000E+02

THE VECTOR y is:
yl = .OOOOOOE+00

FOR ns = 3 THE STATE OF THE SYSTEM IS:
THE VECTOR x is:

xl = .100000E+02
THE VECTOR v is:

vi = -.500000E+01
v2 = .500000E+01

THE VECTOR y is:
yl = OOOOOOE+00

142

N"6k-JWU-riW M W.tWUVU

ExamTple #2

A low-pass filter having a zero at z = -1.0 and poles at

z = .95, .95e-jr/6 .. 95e~jir'/6 has the transfer function:

z+l1
H(z) -z

3
- 2.5954z2 + 2.4657z - .8574

(J.8)

A state-matrix representation of this system is:

0. 1.0 0.0 00 0

v(ns+l) 0. 0.0 1.0 v(ns) + 000 ns

(J.9)

y(ns) [1.0 1.0 0.0]v(ns) + [0 0 0] x(ns)
(J.10)

The inputs to the system are the three sequences:

xl(ns) =l0.0*u(ns)
(J.11)

x2(ns) =2*cos(7r*ns/6)*u(ns)
(J.12)

x3(ns) =2*cos(,r*ns/2)*u(ns)
(J.13)

The initial condition of the system is the vector:

(J.14)

To solve this problem, the input file STATEQ.IN was created.

A listing of this file appears below. Plots of the

sequences x1l(ns) , x2 (ns) , x3 (ns) , vl (ns) , v2 (ns) , v3 (ns) ,

and yl(ns) are included on the pages that follow. The

143

sequences were computed for 100 values of ns (nstop = 99).

Because of the lengths of the input sequences, all three

input sequences were generated through use of the subroutine

XGEN.

As the plots indicate, the filter amplifies the low

frequency inputs xl and x2, but attenuates the high

frequency input x3.

STATEO.IN

03 3 1
99 S
0.0 1.0 0.0
0.0 0.0 1.0
0.8574 -2.4657 2.5954
0.0 0.0 0.0
0.0 0.0 0.0
1.0 1.0 1.0
1.0 1.0 0.0
0.0 0.0 0.0
0.0 0.0 0.0

144

III -I I I

&%
Co CD c O0..

31C w

Figure~~ ~ ~ ~ ~ J.-nu eunex~s xml 2

145"

"am

Eam"

rn3-w

3CI

coo

Figure J.2 Input sequence X2(fls)
-Example #2.

146

Io

m -

-M

VC

-Sw

==

U-M

ama

en -n C%2

3 %-4"%

Figure J.3 Input sequence x3(ns) -Example #2.

147

31

9w

OEM U
no _-1

-0
Co

400-
a" ~

am-

Go

i-IM

iCo!

-i %J! C%
W% Cm

-4

30C si
Figure JA4 State sequence vl(ns) -Example #2.

148

4%8%

31C =0

Figure ~ ~ ~ ~ ~ ~ ~ w J. tt eqec 2n xml 2

149

a%.

-- evil
2C

Figue J6 Stte equece 3(n Exmpl #.

a15

Co

0%n

too% 4M

an~

Fiur J. uptseune-l) Exml 2

s-i 0151

HUMM-M-

open
input

file.

Read N, M, Q

R :a sop, xsorce.

Conduct error checks.1

Read A(i J).

Read B(i'j)Read C(i,'j).

Read O(i,j).
rRad v(i).

/Read xs(i,ns) from fil

Call ?T T to computeutdat
tI itertiv solution.een

Write resuts dtoails
ATo Q OUTla STATEQ. OUT.

15

CallITRAE tocomp

> For ns =0, nstop.

ys(l,ns) = 0.0

> For k =1, M.1

xi = xi + (,k)*xs(k,ns)

vs(,ns) = s(,ns) + xi

Figureo 1.,TAESbouieFocat

153~s)= .

Appendix K

The software flowcharts describing the program PLOT-

DAT.FOR and the subroutines SCALE and GRIDD are included in

this appendix. Listed below are the variable names used in

the flowcharts and the corresponding Fortran source code.

xmax - The maximum ordinate value read from the data
for each plot.

xmin - The minimum ordinate value read from the data
for each plot.

ymax - The maximum abscissa value read from the data
for each plot.

ymin - The minimum abscissa value read from the data
for each plot.

valmax - A dummy variable passed to subroutine SCALE
containing the maximum value of an array to be
scaled (i.e., xmax or ymax).

valmin - A dummy variable passed to subroutine SCALE
containing the minimum value of an array to be
scaled (i.e., xmin or ymin).

iscal - An integer value that contains the scaling
value determined by subroutine SCALE.

numplts - The integer value that specifies the number of
plots to be created. For each plot, the
parameters listed below must occur in the input
file.

numpts - The integer value that specifies the number of
data points to be read from the input file for
the given plot.

title - The character string consisting of up to 40
characters that comprise the title of the
graph.

xlabl - The character string consisting of up to 14
characters that comprise the label for the x-
axis of the graph.

ylabl - The character string consisting of up to 14
characters that comprise the label for the y-
axis of the graph.

x() - The array containing the ordinate values read
from the input file.

y() - The array containing the abscissa values read
from the input file. Each ordinate, abscissa
pair corresponds to one point to be plotted by
the program.

154

~ Fo £ 1.numpta

Prompt user for
hardcopy YIN ?

Prompt user for
grid YIN ?

N

Rea numpta.
ead title.
Read xlabi.
Read ylabl.

Conduct error chec-s.

Call r SCL to deterin

theorinatem alvaeu.

Call SCALE to determine
the scaling factor for

the abscissa values.

Scale x() and V).

Plot the data by calling
the appropriate plotting
l1ibrary subroutines.

Does user require Create hardcopy
hardcpy ?printout of screen

contents.

Figure K.1 PLOTDAT.FOR Software Flowchart.

155

Prin hoizonal d;.;ed ine

at ech mjortic arklocaion

Figure K.2 GRIDD Subroutine Flowchart.

156

01,11111D ZI

iscal = The largest integer power of 0
occuring in the input array.

valmin = valmin/(10**iscal)
valmax = valmax/(10**iscal)

X

If valmin and valmax < 0.0
valmax = 0.0.

If valmin and valmax > 0.0
valmin = 0.0.

If valmin z 0.0 then valmin
is adjusted to cause a
buffer space to be included
below the minimum value to
be plotted.

If valmax t 0.0 then valmax
is adjusted to cause a
buffer space to be included
above the maximum value to
be plotted.

Figure K.3 SCALE Subroutine Flowchart.

157

- - ...' '~ !

Appendix L

C DIGFREQ. FOR VERSION: 2/03/88
C
C
C PURPOSE: THIS PROGRAM COJITES THE FREQUENCY RESPONSE OF
C DISCRETE SYSTEMS. THE PROGRAM CONSISTS OF A MAIN
C PROGM THAT CONTROLS THE NFUT/OU TUT AND THE
C S dfresp AND coeff. SUBOTINE dfresp
C COMPUTES ME FREQUENCY RESPONSE OF EACH SYSTER.
C SUBRTINE coeff ALLOS THE USER THE OPTION OF
C GENERATING THE FILTER COEFFICIENTS OF THE SYSTEMS
C TO BE ANALYZED BY WRITING THE APPROPRIATE EQUATIONS.
C IF THE USER ELECTS To GENERATE THE COEFFICIENTS BY
C USING THE SUBOTINE coeff, THE EQUATIONS MUST BE
C WRITTEN INTO THE SUBRUTINE USING STANDARD FORTRAN 77
C STATEMENTS. THE COEFFICIENTS MUST BE STORED IN THE
C ARRAYS b() AND c() WHICH CORRESPOND RESPECTIVELY To THE,
C NUMERATOR AND DENO4INATOR TERMS OF THE SYSTEM EQUATION.
C THE USER CAN SELECT ONE OF TWO OPERATING MODES: BATCH
C OR TEST. IN BATCH MODE THE AMOUNT OF INTERFACE WITH
C THE USER IS MINIMIZED AND IT IS ASSUMED THAT THE INPUT
C DATA HAS BEEN STORED IN THE DEFAULT FILE 'DIGF ..IN'. I.
C IN TEST MODE THE USER IS PROI'ED FOR THE NAME OF THE
C INPUT FILE OR HAS THE OPTION TO PERFORM A TRIAL RLIN BY
C USING THE INPUT DATA STORED IN THE FILE 'DIGFREQ.TST'.
C IT IS REOMMENDED THAT FIRST-TIME USERS SELECT THE TEST
C MODE AND MAKE A TRIAL RUN WITH THE PRESTORED INPUT DATA.
C THE TEST MODE ECHOES THE INPUI' DATA ONTO THE MONITOR TO
C ALLOW VERIFICATION OF ITS ACCURACY. THIS PROGRAM WILL
C CMPUTE THE FREQUENCY RESPONSE OF UP TO THREE SYSEM.
C FOR EACH SYSM, THE USER HAS THE OPTION OF HAVING THE
C OUTPUT EXPRESSED IN DECIBELS (dB). THE OUTPT OF THIS
C PROGRAM IS STORED IN TABULAR FORM IN THE FILE
C 'DIGFREQ.OUT' AND IN A FORM SUITABLE FOR PLOITING
C IN THE FILE 'DIGFREQ.DAT'.
C
C
******************************* INPUT ********************************

C
C THIS PFOGRAM ASSUMES THAT EACH DISCRETE SYSTEM IS MODELED BY THE
C EQUATION: H(z) = nun/den WHERE:
C
C num = b(0)*z**L + b(1)*z**(L-1) + ... + b(L-l)*z + b(L)
C
C den = c(0)*z**N + c(1)*z**(N-1) + ... + c(N-1)*z + c(N)
C
C L = A NON-NEGATIVE INTEGER, THE DEGREE OF THE NUMERATOR
C POLYNOMIAL.

158

C N = A NON-NEGATIVE INTEGER, THE DEGREE OF THE DENOMINATOR
C POLYNOMIAL.
C b(0) ... b(L) = REAL COEFFICIETS OF THE NUMERATOR TEIMS.
C c(0) ... c(N) = REAL COEFFICIENTS OF THE DE INATOR TERM.
C
C THE INPUT PARA1ETERS SHOULD BE STORED IN A FILE NAMED
C 'DIGFREQ. IN'. ALL OF THE READ STAEENTS USED BY THIS PROGRAM
C REWUIRE FOFTIED INPUT. PARIMICUAR ATTETION SHOULD BE PAID
C TO THE FOMATS, ESPECIALLY THE USE OF THE DECIMAL POINT TO
C DENOTE 'REAL' NUMBERS. TME INPW PARAMETERS REQUIRED BY THE
C PROGRAM ARE LISTED BELOW.
C
C
C NAME TYPE RANGE (ARRAYS) RESTRICTIONS
C --

C numsys INTGER. 1 <= numsys <= 3
C L INTEGER 0 <= L <= 128
C N INTGER 0 <= N <= 128
C dsorce CHARACTER 'F' OR 'S'
c yscal CHARACTER 'STD' OR 'LOG'
C thetaO REAL
C dlthta REAL
C numpts INTEGER 1 <= numpts <= 101
C b() REAL 0, 1, 2, ... , L 0 <= L <= 128
C c() REAL 0, 1, 2, ... , N 0 <= N <= 128
C
C WHERE:
C numsys = THE NUMBER OF DISTINCT SYSTEMS H(z) TO BE ANALYZED.
C THIS INTEGER VALUE MUST OCCUR AT THE TOP OF THE INPUT
C FILE. IT DELINEkTES THE NUMBER OF SYSTEMS TO BE READ BY
C THE PROGRAM AND ANALYZED. FOR EACH SYSTEM (1, ... , numsys)
C THE PARAMETERS BELOW MUST APPEAR IN THE INPUT FILE.
C
C L = AN INTEGER VALUE SPECIFYING THE DEGREE OF THE NUMERATOR
C POLYNcMIAL.
C
C N = AN INTEGER VALUE SPECIFYING THE DEGREE OF THE DENCmINATOR
C POLYNOMIAL.
C
C dsorce = THE CHARACTER STRING 'F' OR 'S' DENOTING WHETHER THE
C SYSTM OEFFICIENTS ARE TO BE READ FROM THE INPUT FILE (F)
C OR GENERATED (S) THROXGH USE OF THE SUBROUTINE coeff.
C
C yscal = A CiARACTER STRING SPECIFYING ThE DESIRED MAGNITUDE OPTION:
C 'STD' WILL PRODUCE STANDARD MAGNITUDE OUTPU;
C 'LOG' WILL PRODUCE MAGNITUDE EXPRESSED IN DECIBELS (dB).
C
C thetaO = THE STARTING VALUE OF THETA (RAD) AS IN Z=EXP(J*THETA).
C
C dlthta = THE INc mENT OF THETA (RADIANS).
C

159

C mzmpts = THE NUMBER OF FREQUENCY POINTS FOR WHICH THE OUTPUT IS
C TO BE COMUTED.
C
C b() = THE NUMERATOR COEFFICIENTS IN ORDER b(0), b(1), ... , b(L).
C IF dsorce = 'F' IS SELECTED THEN MHE USER MJST SUPPLY =E |E
C LI-1 NUMERATOR COEFFICIENTS IN THE FILE. IF dsorce = 'S'
C THEN THE USER HAS ELECTED TO GENERATE TE NUMERATOR
C COEFF- CIENTI BY WRITNG THE APPROPRIATE FORRAN STATEENTS
C IN MHE SPACE PROVIDED IN SUBROTINE coeff. IF THIS METHOD
C OF DATA GENERATION IS ELECTED THE PROGRAM MUST BE RECOMPILED
C BEFORE EXECUTION.
C
C co THE DENCIMNAOR COEFFICIETS IN ORDER c(O), c(1), ... , c(N).
C IF dsorce = 'F' IS SELECTED THEN ME USER MUST SUPPLY THE
C N+1 DE!NcINATOR COEFFICIENTS IN THE FILE. IF dsorce = 'S'
C THEN THE USER HAS ELEC TO GENERATE THE DENCEINAIOR
C COEFFICIENTS BY WRITING THE APPROPRIATE FORTRAN STATMENTS
C IN THE SPACE PROVIDED IN SUBROUTINE coeff. IF THIS MEiOD
C OF DATA GENERATION IS ELECTED THE PROGRAM MUST BE PEQOMPILED
C BEFORE EXECUTION.
C
C NOTE: THE INPUT FORMAT STATE4ENTS OCCUR IN THE MAIN PROGRAM
C FOIX-WING THE CAPTION: ******** INPUT FORMAT ********.
C M1E FOM OF THE INPUT DATA FILE IS:
C
C LINE # ENTRIES FORMAT
c
C 1 numsys il
C 2 L,N,dsorce,yscal i3,tll,i3,t21,al,t31,a3
C 3 dlthta,thetaO,numpts 2f10.0,i3
C NOTE 1 b(k), k=0,1,...,L 6f10.0
C NOTE 2 c(k) , k=0,1,...,N 6f10.0
C NOTE 3
C
C WHERE: NN = 1 + (/6 ROUNDED DOWN To THE NEXT SMALLER DTDE).
C ND = 1 + (N/6 OUNDED DOWN To THE NEXT SMALLER INTEGER).
C
C NOTES 1. THE NEXT NN LINES ARE ONLY REQUIRED IF dsorce = 'F'. IF
C dsorce = 'S' THEN THE USER HAS ELECTED TO GENERATE THE
C L+I NUMERATOR COEFFICIENTS IN THE SUBROUTINE coeff.
C THE USER MUST PROVIDE THE APPROPRIATE FORRAN STATEMENS
C IN SUBROUTINE coeff TO GENERATE THE VALUES FOR b().
C
C 2. THE NEXT ND LINES ARE ONLY REQUIED IF dsorce = 'F'. IF
C dsorce = 'S' THEN THE USER HAS ELECTED TO GENERATE THE
C N+1 DENOMINAOR COEFFICIENTS IN THE SUBI0JTINE coeff.
C THE USER MUST PROVIDE THE APPROPRIATE FORTRAN STATEENTS
C IN SUBROUTINE coeff TO GENERATE THE VALUES FOR co).
C
C 3. FOR numsys > 1 THE FORMAT OF LINES 2... IS REPEATED.
C

160

lull

C11-

C 4. THE FORAT fl0.0 USED FOR NPUT DATA PERMITS THE DECIMAL
C POINT TO BE PLACED ANYWHERE IN THE FIELD OF 10 COLUMNS
C AND ALSO ALJOWS THE EXPONEnTIAL FOMAT BO BE USED (EG.
C 3146.2 = 3.1462E+03).
C
C

c
C THE WnI r DATA CREATED BY THE PROM IS STORED IN TABULAR FORK
C IN THE FILE 'DIGFREQ.OUT'. ADDITIONALLY, THE OUTPU DATA IS
C WRITTEN INTO THE FILE 'DIGFRE.DAT' TO FACILITATE Pw0r G BY
C A SEPARATE, USER SUPPLIED PRGRAM. THE F T OF UEDATA IN
C 'DIGFREQ.DAT' IS: e12.6, 2x, e12.6. THE FIRST ENTRY CORRESPONDS
C TO THE ORDINATE VALUE (THETA) AND THE SECOND ENTRY THE ABSCISSA
C VALUE (MAGITUDE OR PHASE). ADDITIONAL HEADER INFORMATION IS
C MITE INTO THE DATA FILE TO AILOW FOR CONIRL AND LABELING OF
C EACH PDT.
C
C

C
C THE INPUT PARAMETERS FOR THE SYSTEM DESCRIBED BELOW ARE STORED IN
C THE SAMPLE INPUT FILE 'DIGFREQ.TST' AND CAN BE USED FOR A TRIAL
C RUN IN UXE TEST MDE.
C
C
C SYSTEM: H(z)--z/(z-0.5)
C
C GOAL: TO OBTAIN THE FREQUENCY RESPONSE FOR THIS SYSTEM FROM
C THEIA = 0.0 TO THETA = 3.14159 (PI RADIANS) IN STEPS
C OF dlthta = PI/10.0
C
C FOR THE SYSTEM DESCRIBED ABOVE THE INPUT FILE IS:
C
C 1
C 001 001 F STD
C 0.314159 0.0 011
C 1.0 0.0
C 1.0 -0.5
C
C
C HE RESULTING OUTPUT DATA FILE: 'DIGFREQ. OUT' IS:
C
C INPUT DATA FOR SYSTEM # 1
C
C INPUT DATA SOURCEFILE: DIGFREQ.TST
C DEGREE OF NUMERATOR = 1
C DEGREE OF DENOMINATOR = 1
C dsorce = F
C NUMBER OF FREQUENCY POINTS = 11 MAGIIUDE OPTION = STD
C STARING VAUE OF ThETA = OOOOOOE+00
C INCREMENT OF THETA = .314159E+00

161

C
C THE WNUMAR COEFFICIENTS b(0) ,b(1) ... b(L) ARE
C
C .1000E+01 .0000E+00
C
C

THE DEOINaATOR COEFFICIENTS c(0) ,c(1) . c(N) ARE
C
C .1000E+O1 -.5000E+00
C
C
C wrTLr DATA FOR SYSTEM # 1
C
C THETA MAGNIrJDE PHASE
C (RADIANS) (DEREES)
C
C .000000E+00 .200000E+01 .000000E+00
C .314159E+00 .182897E+01 -.164149E+02
C .628318E+00 .150588E+01 -.262677E+02
C .942477E+00 .122886E+01 -.29807E+02
C .125664E+01 .103088E+01 -.293546E+02
C .157080E+01 .894428E+00 -.265651E+02
C .188495E+01 .800894E+00 -.223862E+02
C .219911E+01 .737654E+00 -. 173608E+02
C .251327E+01 .696900E+00 -. 118186E+02
C .282743E+01 .674038E+00 -.597793E+01
C .314159E+01 .666667E+00 -. 484184E-04
C
C END OF RN, SYST # 1
C
C
C FUR ILUJSTRATIVE RMPORES THE COEFFICIENTS b() AND Co COULD
C HAVE BEEN GENERATED BY SPECIFYING dsorce = 'S' AND WRITING THE
C APPROPIATE FU 0RAN S AEMENS INTO SURnE coeff. THE
C STAEMETS THAT COULD BE USED TO ACCMPUSH THIS ARE WRITEN INTO
C THE SUJ FNE BUr ARE 'COMMIE E OTr'.
C
*************************** MAIN PROGAM

character infile*12, mode*l, ylabl*13, dsorce*l, yscal*3

real mh(101), ph(101), thetav(101), c(0:128), b(0:128)

C PROMPT USER FOR MODE: BATCH OR TEST.

write(*, 1115)
read(*, 1117) mode
if((mode.eq. 'Y') .or. (mode.eq. Y')) then

mode = Y'
write(*, 1118)
read(*,1119) infile
else

162

infile = DIGFRB. IN'

endif

C UNIT--l DEFINED AS INR)V FILE. UNITS-2, 3 DEFINED AS wYMj MMlE.

open (unit--l ,file-infile, status= 'old' ,iostat--ierr, err=-999)
open (unit-2 , f ile-'I DIGFR . OUT I)
open (unit=-3 ,file-' DIGFEQ. DAT')

C READ INPUT PARAETERS AND CONUCr ERROR CHEC1M.

read(l,l000) numsys
nuiTlts = ntmrys*2
write(3, 2000) numiplts
if((numsys.lt.l) .or. (numsys.gt.3)) then

write(*, 1122) nmiys
stop ' Error, numsys must be in the range: 1 <-- numsys <-- 3.'
endif

do 10 nsys=l, numisys
data m1~./01*0.0/, ph/l0l*0.0/, thetav/l01*0.0/
data b/129*0.0/, c/129*0.0/

read(l,100l) L, N, dsorce, yscal.
read (1, 1002) dlthta, thetaO, nunipts

if((L.lt.0) .or. (L.gt.128)) then
write(*,1124) nsys, L
stop 'Error, L must be in the range: 0 <-- L <-- 128.'

elseif((N.lt.0) .or. (N.gt.128)) then
write(*,1125) nisys, N
stop 'Error, N rmust be in the range: 0 <=- N <=- 128.'

end.if

if((dsorce.eq.'F').or.(dsorce.eq.'f')) then
dsorce = 'F'

elseif((dsorce.eq. 'S') .or. (dsorce.eq. s')) then
dsorce = '5'

else
write(*, 1018) dsorce
stop 'The allowed values for dsorce are: ''S'' or'F''

erxiif

if((nampts.lt.1) .or. (nurrpts.gt.l0l)) then
write(*,1127) nsys, nunipts
stop 'Error, numpts must be in the range: 1 <= nunpts <-- 101.'

endif

if((yscal.eq. 'SD') .or. (yscal.eq. 'std')) then
yscal = 'STD'
ylabl = I M4AGffIUEI

elseif(((yscal.eq. 'JJG') .or. (yscal.eq. 'log')) then

163

yIScal = IC
ylabl = 'AITIIUDE (dB)

else
write(*,1128) yscal
stop I Eror, yscal must be the string: "ILM' or 'STD' *

C FMR dsorce = IF' READ M1E CEFFCIENTIS bo(AND co(FRCM THE INPrT
C FIT.. FMR dsorce = IS' CALL coeff TO0 GENERA.TE TIHE COEFFICIENTIS.

if(dsorce.eq. 'F') then
read (1, 1003) (b (k) , k=0,L)
read(1,1003) (c(k) ,k=0,N)

else
call coeff (L, N, nsys, b,c)

erdif

C WRITE INPUT DATA IT'O TH1E OUTP'LT FILE: DIGFREQ. OUT.

write(2,1008) nsys
write (2, 1010) infile
write (2, 1110) L
write (2, 1111) N
write(2, 1019) dsorce
write (2,1112) nmpts, yscal
write(2, 1113) thetaa
write (2, 1114) dlthta
write (2, 1004)
write(2,1005) (b(k) ,k=0,L)
write(2, 1006)

write(2,1009) nsys
write(2, 1126) ylabl
write(2, 1007)

C FOR TEST MODE ECHO AIL INPUTS ONTIO MNITIOR (UNIT=

if(mode.eq. 'Yin) then
write(*,1120) nsys, infile
write(*1110) L
write(*1111) N
write(*, 1019) dsorce
write(*,1112) nunipts, yscal
write(*, 1113) thetaO
write(*, 1114) dlthta
write(*, 1004)
write(*,1005) (b (k) , k-0, L)
write(*, 1006)
write(*,1005) (c (k) ,c-:0,N)
write(*,1123) nsys
pause 'EN~D OF MVJ, STRIKE <CR> WHEN READY TO (X)NTINUE.'

erdif

164

C CAIL dfresp 'TO CORiE TE FREQUENCY RESPONSE-

call dfresp (b, c,nh ,p±, L, N, thetaO ,dlthta ,thetaV,mnii~ts, yscal)

C WRITE RESULTS INTO OWrFU FILE: DIGFEQ. DAT.

write(3, 2001) riunpts
wrjte (3, *) 'MA124'IUD RESPONSE'
write(3,*) ' HMEr (rad)'I
write(3 ,2003) ylabl
do 55 np=1, nunipts

write(3 ,2010) thetav(np), nih(np)
55 continue

write(3, 2001) nunipts
wijte(3,*) 'WHASE RESPONSE'
wrjte(3,*) IHEI' (rad)'
write(3,2003) I PHIASE (DEG)
do 56 np~1, nlxnmpts

write(3,2010) thetav(np), ph(nip)
56 conytinue

C WRITE RESULTS INTIO wmTFr FILE: DIGFREQ. OUT.

do 150 np=l, nunpts
write(2, 1013) thetav(np), nli(np), ph(np)

150 conytinue
write(2,1123) nsys

10 continue

write(*, 1121)
999 close (unit--l)

close (unit--2)
close (unit--3)

if(ierr.gt.0) then
write(*, 1116) ierr

C***********~ INPUT! F01MTl ********

1000 format(il)
1001 form~at (i3, tl,iD,t21, al, t31, a3)
1002 format(2f10.0,i3)
1003 format(6f10.0)

1004 format(t4,1THE NUMERATOR CEFFICIENTS b(0),b(1) ... b(L) ARE: '/
1005 forniat(6(2X,ell.4),//)

165

1006 0format(//,t4, 1THE DENOMINATOR COEFFICIENTS c(0),c(1) . C(N)'
1' ARE: ' ,/)

1007 fornat(t6, '(RADIANS)' ,t38,'(DEGREES) ',/)
1008 format(t16,' INPU DATA FOR SYSTEM # ',il,//)
1009 format (///, t16,' I TPU DATA FOR SYSTEM # ',il,/)
1010 format (t4, 'INPUT DATA SOURCEFILE: ',a12)
1013 format(t4,3(e12.6,4x))
1018 format(lx, 'dsorce = ',al, 2x, 'Error, illegal value for dsorce.')
1019 format(t4, 'dsorce = ',al)
1110 format (t4, 'DEGREE OF NUMERATOR= ',i3)
3111 format(t4,'DEGREE OF DENOMINATOR= ',i3)
1112 Oformat(t4, 'NUMBER OF FREQUENCY POINTS = ',i3,t39, '1MA IIUDE',

1' OPTION = ',a3)
1113 format(t4, 'STARING VAUE OF THErA= .,e12.6)
1114 format(t4, 'IINC T OF HEIA = ',e12.6,/)
1115 Oformat (lx, 'DO YOU WISH To RUN THIS PROGRAM IN TEST',

1' MODE ? (Y/N) <CR> : ',\,)
1116 Oformat (///, Ix, 'ERROR OPENING INPUr FILE, PROGRAM TEMINATED.',

1//, lx, 'ERROR CODE: I,i4,/////)
1117 format (al)
1118 Oformat (/////, lx, 'TYPE HE NAME OF YOUR DATA FILE FOLLED',

1' BY <CR>. ',/,' IF YOU DESIRE TO MARE A TEST R[N USING THE',
2' SAMPLE DATA ALREADY STORED' ,/,' IN THE FILE: DIGFREQ. TST
3 ' TYPE: DIGFRE.TST <CR>',/,' FILEAME: ,\,)

1119 format (al2)
1120 format(////,t4, 'SYSTE4 # ',il, INPUT DATA SOURCEFILE: ',a12)
1121 Oformat(//,t4, 'TAa OUTPUT DATA IS STORED IN FILE: DIGFF.OUT',

1/, t4, 'IPLDTING DATA IS STORED IN FILE: DIGFREQ. DAT. ')
1122 format(//////,t2,'The value of numsys is: ',il,'.')
1123 format(/,lx,13('-'),' END OF RUN, SYSTEM # ',il,2x,13('-'),//)
1124 Oformat(//////,t2,'The degree(L) of the numerator for system '1i'# ',il,'I is : L = ', i3,'.'1)
1125 Oformat(//////,t2, 'The degree(N) of the denominator for system'

1,' # ',il,' is : N= ',i3,'.')
1126 format(///,t8, 'THETA' ,t21,a13,t40, 'PHASE')
1127 format(//////,t2,'The value of numpts for system ',il,' is: ', i3)
1128 format(/////,t2,'The value of yscal is: ',a3,'.')
2000 format (il)
2001 format(i3)
2003 format(a13)
2010 format(el2.6,2xel2.6)

C SUBIWTINE: dfresp

C PURPOSE: THIS SUROUTINE CqPJI'S M1E FREQUJENCY RESPONSE OF
C THE SYSTEM. ALL FREQUENCY CALCULATIONS ARE IN RADIANS,
C HOWEVER TME OUTU IS CONVERTED TO DEGREES.

166

C ME~ w~rtur FOR4AT FOR EACH FREUENCY INCEMEI! IS:
C MAGtIUDE(14) PHASE (P) AS IN: M*EXP (J*P).

subroutine dfresp (b, c, rah, ph, L, N, thetaO, dithta, thetav, nunpts , yscal)
real rrh(rmpts) , ph (nuiipts) , thetav (nrnpts) , irnz, rez
real. b(0:L), c(0:N)
ch~aracter yscal*3
cmtplex z, den, n, h, ci

C DEFINE CONSTATS.

pi = 4.0*atan(1.0)
ci = (1. 0,0. 0)

C ITERATE FROM thetaO, IN INCREMEMI OF dlthta.

do 100 rip=1, nunpts
num = ci*b(0)
den = ci*c (0)
thetav (np) = thetaO + (np-i) *dlthta
rez = cos (thetav (np))
imz = sin(thetav(np))
Z = armp1x(rezlnnz)

C CUMI]ATE NUMERA 1OR FOR GIVEN VAlUE OF MiETA, IF L > 0.

if(L.gt.0) then
do 50 k=1l, L

nRm = z'~nm + ci*b(k)
50 Continue

erdif

C CALCULATE DENCMINATOR FOR GIVEN VALUE OF TLHEMA, IF N > 0.

if(N.gt.o) then
do 70 k=1l, N

den = Z*den + ci*c(k)
70 continue

ernif
h = ntmVden

C CONVERr CflI'PEX VALUJE 'hl INT~O MAGNI'UDE (mh) AND pHASE (ph) TERm.
C IF Yscal = 'LOG' THEN CONVRT MAGTI2TDE TO0 DECIBELS (dB).
C DIVIDE BY ZERO AVOIDED BY I if I SrATETENTS.

mh(np) = cabs(h)
if(yscal-eq 'WOG') then

if(nih(np) .gt. 0.00001) then
nti(np) = 2O.O*loglO(xph(np))

167

Will

else
mhtinp) = -100.0

erdif

if(abs(real(h)) .lt1Oe-15) then
if(abs(aimag(h)) .le.1.oe-15) ph(np)=O.0
if(aimag(h) .gt.1.Oe-15) ph(np)=-90.0
if (aimag(h) .lt. -1-Oe-15) ph (np) -90. 0

else
phi(np) = (180. 0/pi) *atan2 (aimg(h), real (h))

erdif

100 continue

return

C SUROTINE: coeff

C PURPOSE: THIS SUBROTINE ALLOWS THE USER To0 GENERATE THE
C NUMERATO0R AND DENOCMfINATOR COEFFCIENTS THAT DESCRIBE
C EACH SYSTEM TOD BE ANALYZED. IF dsorce = 'I' ITHEN
C THE MAIN PROGAM WILL CALL 'THIS SUBROU7TINE.

subroutine coeff(L,N,nsys,b, c)
real b(0:L), c(0:N)

pi = 4.0*atan(1.0)
el =L
en = N

C DEVEIOP MHE EQUATIONS ToD GENERATE VALUES FOR THlE ARRAYS b 0 AND co
C IN THIS SPACE. THE STAENEN' TIYPED IN MUST FOLLOW STANDARD
C FORrRAN 77 RIUS AND MAY USE FORTRAN 77 INTRINSIC FUNCTIONS SUCH AS:
C SIN(), COS(), ABSO ... AN EXAMPLE IS SHOWN BELOW. NOTE THAT THE
C VALUE nsys CAN BE USED TOD DISTINGUISH BETWEEN SYSTEM IF MORE THAN
C ONE SYSTEM (numsys > 1) IS To0 BE ANALYZED.
C
C** EXAMPLE *

C

168

C if(nisys.eq.1) then
C do 2i=o, L
C b(i) = cos(i*pi/(2.O*el))
C 2 continue
C do 3i=O, N
C c(i) = cos.(2.O*i*pi/(3.O*en))
C 3 continue
C erdif

return
end

169

C ANLGFREQ. FOR VERSION 2/03/88
C
C
C PURPOSE: THIS P AM COMPUTES THE FREQUENCY RESPONSE OF
C CONTINUOUS-TIME SYSTEMS. THE PROGRAM CONSISTS OF A
C MAIN PROGRAM THAT CONTROLS THE INPUT/CU= AND THE
C SUBOTINE afresp THAT COMPTES THE FREQUENCY
C RESPONSE. THE USER CAN SELECT ONE OF TWO OPERATING
C MODES: BATCH OR TEST. IN BATCH MODE THE
C AOUNT OF INTERFACE WITH THE USER IS MINIMIZED AND
C IT IS ASSUMED THAT THE INPUT DA.TA HAS BE STORED IN
C THE DEFAULT FILE 'ANLGFREQ. IN'. IN THE TEST
C MODE THE USER IS PROED FOR THE NAME OF THE INPUT
C FILE OR HAS THE OPTION TO PERFORM A TRIAL RUN BY
C USING THE INPUT DATA STORED IN THE FILE 'ANLGFREQ.TST'.
C IT IS RECOME2DED THAT FIRST-Tl USERS SELECT THE
C TEST MDDE AND MAKE A TRIAL RJN WITH THE PRE-
C STORED INPUT DATA. THE TEST MODE ECHOES THE
C INElT DATA ONTO THE MONITOR TO ALLOW VERIFICATION OF
C ITS ACCURACY. THIS PROGRAM WILL COMPUTE THE FREQUENCY
C RESPONSE OF UP TO THREE SYSTEMS. FOR EACH SYSTEM, THE
C USER HAS THE OPTION OF HAVING THE OUTPUT EXPRESSED IN
C DECIBELS (dB). THE OTPUT OF THIS PROGRAM IS STORED IN
C TABULAR FORM IN THE FILE 'ANLGFREQ.CUT ' AND IN A FORM
C SUITABLE FOR PLOiING IN THE FILE 'ANLGFREQ. DAT'.
C
C
C***************************** IN J *********************************

C
C THIS PROGRAM ASSUMES THAT EACH CONTINUOUS-TIME SYSTE IS MODELED
C BY THE EQJATION: H(s) = num/den WHERE:
C
C ntmn = b(0)*s**L + b(1)*s**(L-1) + ... + b(L-1)*s + b(L)
C
C den = a(0)*s**N + a(1)*s**(N-1) + ... + a(N-1)*s + a(N)
C
C L = A NON-NEGATIVE INTEGER, THE DEGREE OF THE NUMERATOR
C POLYNOMIAL.
C N = A NON-NEGATIVE INTEGER, THE DEGREE OF THE DENOMINATOR
C FOLYNONIAL,.
C b(0) ... b (L) = REAL COEFFICIENTS OF THE NUMERATOR TERMS.
C a(0) ... a (N) = REAL COEFFICIENTS OF THE DENOMINATOR TERMS.
C
C THE INPUT PARAMETERS SHOULD BE STORED IN A FILE NAMED
C 'ANLFREQ. IN'. ALL OF THE READ STATEMENTS USED BY THIS PROGRAM
C REUIRE FORMATTED INPUT. PARTICULAR ATTENTION SHOULD BE PAID
C TO THE FORMATS, ESPECIALLY THE USE OF THE DECIMAL POINT TO
C DENOTE 'REAL' NUMBERS. THE INPT PARAMETERS REQUIRED BY THE
C PROGRAM ARE LISTED BELOW.
C
C

170

C NAME TYPE RANGE (ARRAYS) RESTRICTIONS
C --
C nutys INTEGER 1 <= numsys <= 3
C L INTEGER 0 <= L <= 128
C N INTEGER 0 <= N <= 128
C cmega0 REAL
C dlcmga REAL
C nnpts INTEGER 1 <= nui:pts <=101
C yscal CHARACTER 'STD' OR 'LOG'
C b() REAL 0,1,2...L 0 <= L <= 128
C a() REAL 0,1,2...N 0 <-- N <= 128
C
C WHERE:
C numsys = THE NUMBER OF DISTINCT SYSTEMS H(s) TO BE ANALYZED.
C THIS INTEGER VALUE MUST OCCUR AT THE TOP OF THE INPUT
C FILE. IT DELINEATES THE NUMBER OF SYSTEMS TO BE READ BY
C THE PROGRAM AND ANALYZED. FOR EACH SYSTEM (1, ... , numsys)
C THE PARAMETERS BELOW MUST APPEAR IN THE INPUT FILE.
C
C L = THE DEGREE OF THE NUMERATOR POLYNCMIAL.
C
C N = THE DEGREE OF THE DENOMINATOR POLYNOMIAL.
C
C cmegaO = THE STARTING VALUE OF CMEGA (RAD/S) AS IN S=J*C4EGA.
C
C dlcmga = THE INCREMENT OF CtlEGA (RAD/S).
C
C numpts = THE NUMBER OF FREQUENCY POINTS FOR WHICH THE OtflUIT IS TO
C BE CCPrI .
C
C yscal = A CHARACTER STRING SPECIFYING THE DESIRED MAGNITIUDE OPTION:
C 'STD' WILL PROJCE STANDARD MAGNIIUDE OUTPUT;
C 'LOG' WILL PRODUCE MAGITUDE EXRESSED IN DECIBELS (dB).
C
C b(k) = THE NUMERATOR COEFFICIENTS IN ORDER b(0), b(1), ... , b(L).
C
C a(k) = THE DENOMINATOR COEFFICIENTS IN ORDER a(0), a(1), ... , a(N).
C
C NOTE: THE INPUT FORMAT STATEMENTS OCCUR IN THE MAIN PROGRAM
C FOLlJWING THE CAPTION: ******** INPUT FORMAT ********.
C THE FORK OF THE INPUT DATA FILE IS:
C
C LINE # ENTRIES FORMAT
C
C 1 numsys il
C 2 L,N,numipts,yscal i3,tll,i3,t21,i3,t31,a3
C 3 dlomga,omega0 2fl0.0
C 4...4+M b(k), k=0,l,...L 6f10.0
C 5+NN...5+NN+N a(k), k=O,1,...N 6f10.0
C *
C

171

C WHERE: NN = 1/6 ROUNDED DOWN TO THE NEXT SMALLER INTEGER.
C ND = N/6 ROUNDED DOWN TO THE NEXT SMALER INTEGER.

I C

C *NOTE: FOR numsys > 1 THE FORMAT OF LINES 2... IS REPEATED.
C
C THE FORMAT f10.0 USED FOR INPUT DATA PERMITS THE DECIMAL
C POINT TO BE PLACED ANYWHERE IN THE FIELD OF 10 COLUMNS
C AND ALSO ALLOWS THE EXPONENTIAL FORMAT TO BE USED (EG.
C 3146.2 = 3.1462E+03).
C
C

C
C
C THE CrMM DATA CREATED BY THE PROGRAM IS STORED IN TABULAR FORM
C IN THE FILE 'ANIGFREQ.0UT'. ADDITIONALLY, THE WrIT DATA IS
C WRMTEN' INTO THE FILE 'ANLGFREQ.DAT' TO FACILITATE PLOITING BY A
C SEPARATE, USER SUPPLIED PROGRAM. THE FORMAT OF THE DATA IN
C 'ANLGFRE.DAT' IS: e12.6, 2x, e12.6. THE FIRST ENTRY CORRESPONDS
C TO THE ORDINATE VALUE (cMEGA) AND THE SECOND ENTRY THE ABSCISSA
C VALUE (MAGNJI DE OR PHASE). ADDITIONAL HEADER INFORMATION IS
C WRITTEN INTO THE DATA FILE TO ALLOW FOR CONTROL AND LABELING OF
C EACH PLOT.
C
C
C**************************** EXAMLE ********************************c

C
C
C THE INPUT PARAMETERS FOR THE SYSTEM DESCRIBED BELOW ARE STORED IN
C THE SAMPLE INPUT FILE 'ANlGFREQ.TST' AND CAN BE USED FT P A TRIAL
C RJN IN THE TEST MODE.
C
C
C SYSTE: H(s) = 10.0*s/(s**2 + 6.0*s + 5.0)
C
C GOAL: TO OBTAIN THE FREQUENCY RESPONSE FOR THIS SYSTEM FROM
C OMEGA = 0.0 TO OMEGA = 4.0 (RAD/S) IN STEPS OF
c dlonga = 0.2 (RAD/S).
C
C FOR THE SYSTEM DESCRIBED ABOVE THE INPUT FILE IS:
C
C 001
C 001 002 021 STD
C 0.2 0.0
C 10.0 0.0
C 1.0 6.0 5.0
C
C

172

. .. . qs

C THE RESULTING OUITPUI DATA FILE ('ANLGFREQ.O lT') IS:
C
c INU DATA FOR SYSTEM # 1
C
C INPJI DATA SOIRCEFILE: ANILGFREQ.TST
C DEXE OF NUMERATOR = 1
C DEGEE OF DENOMINATOR = 2
C NUMBER OF FRQUENCY POINTS= 21 MAGNI'IUDE OPTION = STD
C STARIING VALUE OF OMEGA = .000000E+00
C INCREMENT OF OMEGA = .200000E+O0
C
C THE NUMERATOR COEFFICIENTS b(O),b(1) ... b(L) ARE:
C
C .1000E+02 .0000E+O0
C
C
C MlE DENOMtINATOR COEFFICIENTS a(0) ,a(1) ... a(N) ARE:
C
C .1000E+01 .6000E+01 .5000E+01
C
C
C OUriUr DATA FOR SYSTEM # 1
C
C COEGA MAGNITUDE PHASE
C (rad/s) (DEGREES)
C
C .000000E+00 .000000E+00 .000000E+00
C .200000E+O0 .391919E+00 .763995E+02
C .400000E+O0 .740416E+00 .636247E+02
C .600000E+00 .102166E+01 .521935E+02
C .800000E+00 .123370E+01 .422499E+02
C .100000E+O1 .138675E+01 .336901E+02
C .120000E+O1 .149402E+01 .263098E+02
C .140000E+O1 .156719E+01 .198954E+02
C .160000E+01 .161531E+01 .142607E+02
C .180000E+01 .164497E+01 .925573E+01
C .200000E+O1 .166091E+01 .476364E+01
C .220000E+01 .166654E+01 .694459E+00
C .240000E+01 .166435E+01 -.302114E+01
C .260000E+01 .165616E+01 -.643692E+01
C .280000E+01 .164335E+01 -.959500E+01
C .300000E+01 .162698E+01 -.125288E+02
C .320000E+01 .160786E+01 -. 152652E+02
C .340000E+01 .158665E+01 -.178262E+02
C .360000E+01 .156386E+01 -.202298E+02
C .380000E+01 .153990E+01 -.224913E+02
C .400000E+O1 .151511E+01 -.246236E+02
C
C END OF RUN, SYSTEM # 1
C
C

173

'I-An

C******************** J~MN PROGRAM

character infile*12, mode*1, ylabl*13, yscal*3
real uti(101), p(1O1), anegav(101), a(0:128), b(0:128)

C P1RCZ4P USER FOR MODE: BATCH~ OR TEST.

write (*, 1115)
read(*,1117) mode
if((mode.eq. 'Y') .or. (mode.eq. 'y')) then

mnode =I I
write (*, 1118)
read(*, 1119) infile
else
infile = 'ANLGF!REQ.IN'

C UNT-1 DEFINED AS INPEP1 F-1IE. UNITS--2, 3 DEFINED AS OUTP~UT FIES.

open (unit=1-, fi-le7-infile, status= 'old' ,iostat=ierr, err--999)
open (unit=2, file='ANL-GFRDQ.OUT')
open (unit=3 ,file=' AN1GFREQ. DAT')

C READ INPUT PAIWMETERS AND CNDUCT ERROR CHIECKS.

read(1,1000) numsys
numiplts = nunsys*2
write (3,2000) numiplts

if((nunisys.lt.1) .or. (nunisys.gt.3)) then
write(*, 1122) numisys
stop 'Error, numsys must be in the range: 1 <-- numsys <=- 3.'
erijif

do 10 nsys=1, nunisys

data Inl/l0l*0.0/, ph/101*0.0/, omegav/101*0.0/
data a/129*0.0/, b/129*0.0/

read(1,1001.) L, N, nunipts, yscal
read(1,1002) dlcmga, cznegaO

if((L.lt.0) .or. (L.gt.128)) then
write(*,1124) nsys, L
stop 'Error, L must be in the range: 0 <= L <= 128.'

elseif((N.lt.0) .or. (N.gt.128)) then
write(*,1125) nsys, N
stop 'Error, N must be in the range: 0 <= N <= --28.

erli f

174

=I K7VL711 JLXUU3W0IU-1XnMR n Pl~~dlr. nP

if((numipts.lt.1) .or. (ntmpts.gt.l01)) then
write(*,1127) nsys, numpts
stop 'Error, nuinpts must be in the range: 0 <-- nunipts <-- 101.'

endif

if ((yscal.eq. 'Sn' .or. (yscal-eq. I'std')) then
yscal = 'STD'
Ylabl = ' MAI'IUEI

elseif ((yscal.eq. 'LOG') .or. (yscal.eq. Ilog')) then
yscal = 'LDG'
ylabl = 'NAGNTUE(dB)'

else
write(*, 1128) yscal
stop ' Error, yscal must be the string: ''ILOG'I' or ''ISn) '*I

C REA THE SYSTEK CEFFICIENTS b () AND a().

read (1, 1003) (b (k) , k=O,L)
read(1,1003) (a(k) ,k=0,N)

C WRITE THE INPtIT PARAMET~ERS INTO 0UIPJT FILE: ANI.GFREQ. OUr.

write(2,1008) nsys
write (2, 1010) infile
write (2, 1110) L
write(2,1111) N
write(2,1112) numipts, yscal
write(2, 1113) omega0
write(2, 1114) dlonga
write (2,1004)
write(2,1005) (b(k),k=0,L)
write (2,1006)
write (2, 1005) (a (k) , k=O, N)
write(2,1009) nsys
write (2,1126) ylabl
write(2, 1007)

C FOR TEST MODE ECHO ALL INPUTS ONTOI MONITOR (UNIT

if(mode.eq. 'Y') then
write(*,1120) nsys, infile
write(*, 1110) L
write (*, 1111) N
write(*,1112) riumpts, yscal
write(*, 1113) omegao
write(*, 1114) dicinga
write(*, 1004)
write(*,1005) (b (k) , k=O,L)
write(*, 1006)
write(*,1005) (a (k) , k=0,N)
write(*,1123) nsys

175

Pause ' END OF RUN, STRIK <CR> WHEN READY ToD CNTINE
erdif

C CALL afresp TOD CCMVIE FRB)WECY RESPONSE.

call afresp(b,a,iit,ph, L,N, cIega0,dlanga, cmegav,nmts,yscal)

C WRIT RESULTS INTO O~F~ FILIE: ANLGFREQ. DAT.

write (3,2001) numtpts
wrjte (3, *) 'NA~I UD RESPONSE'
write (3, *) I OEG~A (ra/s)'I
write(3, 2003) ylabl
do 55 np = 1, nunpts
write(3,2010) cmegav(np), mh(np)

55 continue

write(3, 2001) nunpts
write(3,*) 'IWE RESPONSE'

write(3,2003) I PHASE (DEG)I
do 56 np = 1, nipts

write(3,2010) ocegav(np), ph(rip)
56 continue

C WRITE RESULTIS 11110 OJrTPr FIL-E: ANI(FREQ. WI'.

do 150 np-1, numipts
write(2, 1013) mpagav(np), rh(np), ph(np)

150 continue
write(2,1123) nsys

10 continue

write (*, 1121)
999 close (unit=1)

close (unit=2)
close (unit=3)

if(ierr.gt.0) then
write(*,1116) ierr
erdif

C ~V****INuRI FORMT ******

1000 format(i3)
1001 format(i3,tll,i3,t21,i3,t3l,a3)
1002 fonrlat(Mf1.0)
1003 format(6(flO.0))

176

1004 format(t4, ITHE NUMERATOR COEFFICIENTS b(0) ,b(1)...b(L) ARE:',/)
1005 format(6(2X,ell.4) ,//)
1006 0format(//,t4, 'THE DENINAOR COEFFICIEM a(0) ,a(1) . a(N)'

1' ARE: 'l/)
1007 format(t8, ' (rad/s) ',24x, I(DREES) ',/)
1008 format(t16,' I DUT DATA FOR SYSTEM # ',il,//)
1009 format (///, t16,' E= DATA FOR SYSTE # ',il,/)
1010 format(t4,'INFUr DATA SOURCEFILE: ',a12)
1013 format(t4,3 (el2.6,4x))
1110 format(t4,'DEREE OF NUMERATOR= ',i3)
1111 format (t4, ' DEGREE OF DENCMNAOIR = ', i3)
1112 Oformat(t4, 'NUMBER OF FREQUENCY POINTS = ',i3,t40, 'MAGNIIUDE',

1' OPTION = ',a3)
1113 forMat(t4,'STARING VALUE OF CMEGA = ',e12.6)
1114 format(t4, 'INCPR T OF OMEGA = ',e12.6,/)
1115 Oformat (lx, 'Do YOU WISH TO o N THIS PROGRAM IN TEST',

1' MODE ? (Y/N) <CR> : ',\,)
1116 Oformat (///, ix, ' ERROR OPENING IN r FILE, PROGRAM TERMINATED.',

I/l,I , 'ERROR CODE:' li41/////)
1117 format (al)
1118 Oformat (/////, x, 'TYPE THE NAME OF YOUR DATA FILE FOLIOWED',

1' BY <CR>.' ,/,' IF YOU DESIRE TO MAKE A TEST JN USING HE',
2' SAMPLE DATA ALREADY SIORED' ,/,' IN THE FILE: ANIGFREQ. TST',
3 ' TYPE: ANLGFREQ.TST <CR>',/,' FILENAME: ',\,)

1119 format (a12)
1120 fonrat(////,t4,'SYSTEM # ',il,' INPI DATA SOURCEFILE: ',a12)
1121 Oformat (/,t4, ' TABUIA OUPU DATA IS STORED IN FILE: AN1GFREQ. OUr'

1,/,t4, 'PL0ITING DATA IS STORED IN FILE: ANLGFREQ.DAT')
1122 format(//////,t2,,The value of numsys is: ',il,'.')1.123 format (/, lx, 13 (1 -,), 1EDO JSSE l x 3(
1124 Oformat(//////,t2,'The degree(L) of the numerator for system ',i # ', il,'I is : L = ', i3, 1. ,)
1125 Oformat(//////,t2,'The degree(N) of the denominator for system ',1i'# ', il,'I is.. N = ',i3,'.'1)
1126 format(///,t8, 'OMEGA',t21,a13,t40, 'PHASE')
1127 format(//////,t2,,The value of nunpts for system ',il,' is: ',i3)
1128 format(//////, t2, 'The value of yscal is: ',a3, '. ')
2000 format(il)
2001 format(i3)
2003 format(a13)
2010 format(el2.6,2x,el2.6)

end

177

S -o.

C SUFJT'INE: afresp

C PUROE: THIS SUEJOUI'flE COMP=IE TH~E FREQUtENCY RESEIONSE OF
C TIHE SYSTEM. ALL FREQUENCY CAfLJLATIONS ARE IN RADIANS,
C HOWEVER TIHE OUTPUT IS CONVERTED TO0 DEGREES.
C MIE OrUTPU F0FO FOR EACHI FREQUENCY INCRMN IS:
C MAGNITUDE(M) PHASE (P) AS IN: M*E)P(J*P).

subroutine afresp (b, a, xrh, ph, L,N, omega0, dicinga, ,cegav, ntmpts, yscal)

real nih(nunpts), ph(numpts), omegav(numrpts)
real b (0:L) , a (0: N) , im, res
character yscal*3
cmiplex s, den, numn, h, ci

C DEFINE CNSTAN1TS.

ci = (1. 0,0. 0)
pi = 4.O*atan(l.0)

C ITERATE FRCM aeaO, IN IMCRUMENTS OF dloiwa.

do 100 rrpl, nunpts
nun = ci*b (0)
den = ci*a (0)
amegav(np) = omega0 + (np-i) *dlornqa
res = 0.0
nrs = angav (np)
s = arip-x (res, is)

C MC1UIATE NumERA'1O FOR GIVEN VALuE OF omFAGA, IF L > 0.

if(L.gt.0) then
do 50 k--l, L

nun = s*nun + ci*b(k)
50 continue

endi~f

C CALCUTATE DENO4INA'OR FOR GIVEN VALUE OF OMEGA, IF N > 0.

if(N.gt.0) then
do 70 k--l, N

den =s*den + ci*a(k)
70 continuje

endif

h = nun/den

178

C CONVRT COMPLEX VAlUE I'h' I IR MANM31DE (nih) AND PH ASE (ph) TERM4.
C IF yscal = I DG' I THNCNVERr MATIUDE TO DECIBES (dB).-
c DIVIDE By zEF~) AVOIDED By I'if I STATEMENTS.

mht(np) = cabs(h)
if (yscal.eq. 'LOG') then

if(ntL(rp) .gt.0.00001) then
nih(np) = 20.0*loglo(nh(np))

else
nih(np) = -100.0

erdif
erxlif

if(abs(real(h)) .lt.1.oe-15) then
if (abs (ainag (h)) . le.. Oe-15) ph(rip) =0.0
if (aimag (h) .gt.. Oe-15) ph (np) = 90. 0
if (aimag(h).lt.-1.Oe-15) ph(np)-90.0

else
ph(np) =(180.0/pi)*atan2(aixnag(h),real(h))

ermiif

100 conytinue

return

end

179

C DFT. FOR VERSION: 2/03/88
C
C
C PURPOSE: TIS PROGRAM COMPUTES THE DISCRETE FOURIER TRANSFORM
C (DFT) OR THE INVES DISCRETE FOURIER TANSFORM (IDFT) OF
C A SEJENCE OF C3PLEX IN UT DATA. THE PGRAM CONSISTS
C OF A MAIN PROGRAM AND THREE UROI . THE SUOTINE
C dft FUTES TE DISCRETE FOURIER TRANSFORM OF THE
c INPUT ARRAY; THE SUBJTINE invdft C4RJTES THE
C INVERSE DISCRETE BUJRIER TRANSFORM; AND THE SUOTINE
C sample AIfLMS THE USER TO GENERATE THE INPJT SEUENCE BY
C WRITING THE APPRORIATE EQUATIONS. IF THE USER ELECTS
C TO GENERATE ME INPJT DATA BY USING THE SUBRJTN
C sample, THE EJAONS MUST BE WRITE INTO THE
C S USING STANDARD FORIRAN 77 E=W BLE STATE-
C MENTS AND THE INPFUT DATA GE2ERUED MUST BE STORED IN
C THE ARRAY xin(). THE OT'PUT OF 'DFT.FOR' IS STORED IN
C THE ARRAY xout(). THE USER HAS THE OPTION OF SELECTING
C ONE OF TWO OPERATING MODES: BATCH OR TEST. IN BA=C
C MODE TME AMOUNT OF INTERACTION WITH THE USER IS
C 1NIMIZED AND IT IS ASSUMED THAT THE INPUT PARAMETERS
C HAVE BEE SORED IN THE INPUT FILE 'DFT. IN'. IN
C TEST MDE THE USER IS PROT= FOR THE NAME OF THE
C INFUT FILE OR HAS THE OPTION TO PERPORMW A TRIAL
C RUN USING THE DATA STORED IN THE FIE 'DFT. TST'.
C IT IS RECMEDED THAT FIRST-TIME USERS SELECT TEST
C MDE AND MAKE A TRIAL R N WITH THE PRESTORED
C DATA. THE TEST MODE ECHOES PORTIONS OF THE
C INPUT DAM ONTO THE MDNITOR TO ALLW VERIFICATION
C OF ITS ACCURACY. THE OUTPUT IS STORED IN TABULAR FORM
C IN THE FILE 'DFT.OUT' AND IN A FORM SUITABLE FOR
C P0I'LTING IN THE FILE 'DFT.DAT'.
C

C
****************************** flTJ ********************************INPUT

c
C
C THIS PGRAM ASSUMM THAT THERE ARE 'N' COMPLEX VALUES IN THE
C INPUT SEQUENCE. THE INPUT SEQUENCE IS ASSUMED TO BE DEFINED IN THE
C INTERVAL: 0 TO N-I. IF THE INPUT SEQUENCE CONSISTS OF 'REAL' NUMBERS,

C THE IMAGINARY PART IS STORED AS 0.0. THE VALUE 'N' AS WELL AS THE
C OTHER PARAMETERS DESCRIBED BELOW SHOULD BE STORED IN THE INPU'T
C FILE 'DFT. IN'. ALL OF THE READ STATEMENTS USED BY THIS PROGRAM
C REQUIRE FORMATTED INPUT. PARTICULAR ATTENTION SHOULD BE PAID TO
C THESE FORMATS, ESPECIALLY THE USE OF THE DECIMAL POINT TO
C DISTMGUSH BETWEEN 'REAL' AND INTEGER DATA.
C
C

180

C NAME TYPE RANGE (ARRAYS) RESTRICTIONS
C --
C N INTEGER 1 <= N <= 256
C dsorce CHARACTER 'F' OR 'S'
C option CHARACTER 'DFr' OR 'INV'
C xin() 0 O, 1 ., N-I 1 <= N <= 256
C
C WHERE:
C
C N = AN INTEGER THAT SPECIFIES THE NUMBER OF CPEX VALLES IN THE
C INPUT SEEsNCE.
C
C dsorce = A CHARACTER VALUE OF 'F' OR '' DENTING WHEIHER THE
C INUT SEQUENCE IS TO BE READ F"4 A FILE (F) OR TO BE
C GENERATED (S) BY A USER-DEFINED EQUATION LOCATED IN THE
C SUF)IE sample.
C
C option = A CHARACTER STRING OF THE LEITERS 'DFT' OR 'INV'
C DENOTING WHETHER THE DFT OR THE INVERSE DFT IS TO BE
C PERFORM ON THE INPUT DATA.
C
C xin() = THE ARRAY OF COMPLEX INMUT DATA. IF dsorce = IF'
C IS SELECTED THEN THE USER MUST SUPPLY THE N INPUT
C VALUES IN THE FILE. IF dsorce = 'S' THEN THE USER
C HAS ELECTED TO GENERATE THE INGOT SEQUENCE BY WRITING
C THE APPROPRIATE FORIRAN STATEMENTS IN THE SPACE
C PROVIDED IN SUERUTINE sample. IF THIS METHOD
C OF DATA GENERATION IS ELECTED THE PRGRAM MUST BE
C REOCPILED BEFORE EXECUTION.
C
C NOTE: THE INPUT FOI@T STATEMENTOCCJR IN THE MAIN PROGRAM
C FOLLOWING THE CAPION: ******** INPUT O T ****
C THE FOR4 OF THE INPUT DATA FILE IS:
C
C LINE# ENTRIES FO1MAT
C
C 1 N,dsorce,option i3,tll,al,t21,a3
C 2...N+1 xin() 2f10.0
C
C
C NOTES 1. LINES 2...N+1 ARE ONLY REQUIRED IF dsorce = 'F'.
C IF dsorce = 'S' THEN THE USER HAS ELECTED TO GENERATE
C THE N VALUES FOR xin () IN THE SUBRITINE sample. THE
C USER MUST PROVIDE THE APPROPRIATE FORIRAN ST'ATE2ENS IN
C SUEBZUTUNE sample TO GENERATE xin().
C
C 2. THE FORMAT f10.0 USED FOR INPUT DATA PERMITS THE
C DECIMAL POINT TO BE PLACED ANYWHERE IN THE FIELD OF TEN
C COLUMS AND ALSO ALLOWS THE EXPCONFVIAL FOAT TO BE
C USED (E.G., 3146.2 = 3.1462E+03).
C
C

181

...........

C******************* J]TJ'**********ie********

C
C
C M~E INPUT DATA AS WELL AS THE WUI DATA ARE STIOREM IN TABULIAR FORM

C IN UMh FIL DFr. CUI!. ADDITIONA=L, 'THE INFUT SEQUENCE (REAL AND
C IMAGnIN AND M1E OUTPU SEQENCE (MA~I t UD AND HWAE) ARE WRITTEN

C INTIO THE FILE 'DFr. DAT' TO0 FACILITATE PID=IIG BY A SEPARATE, USER
C SUPPLIED PRMM. TIHE FORM4AT' OF THiE DAMA IN 'DFr. DAT' IS:
C e12. 6, 2x, e12 .6. THIE FIRST ENTRY COlRRESPONDS To0 THE ORDIATE VALUE

C AND 'THE SEOND EIRY, TEHE ABSCISSA VALUE. ADDITIONAL HEADER.
C INF01MION IS WRITTEN INTO0 'DFr. DAT' TO0 ALIJO FOR CONTROL AND
C LABELING OF EACH PLOT.
C
C

C*****************EXAMPLE*

C
C
C 'TFE INPUT PARAMEERS BELW ARE STIORED IN TH~E INPUT FIL.E
C 'DFT.T ST'. 'THERE ARE FIVE DATA POINTS5 IN UMH DUNI' SEQUJENCE AND MIE

C GOAL IS TOD CAIMIATE MiE DISCRETE FUURIERANSFORM OF 'THE SEIJF2NCE.

C
C
C 005 F DFT
C 0.0 0.0
C 1.0 0.0
C 2.0 0.0
C 3.0 0.0
C 4.0 0.0
C
C
C 'THE RESULTING OUTPUT DATA FILE 'DFr.OUT)' IS:
C
C INPUT DATA SCURCEFILE: DFT ST
C VALUJE OF N = 5 dsorce = F option =DFT

C
C
C INPUT DATA
C
C SAMPLE # REAL IMAGINARY
C
C 0 .000000E+00 .OOOOOOE+00
C 1 .100000E+01. .000000E+00
C 2 .200000E+01 .000000E+00
C 3 .300000E+01 .000000E+00
C 4 .400000E+01. .000000E+00

182

C
C
C OUTPUT DATA
C
C SAMPLE # REAL IMAGINARY MAG,2T=UE PHASE
C (DEGREES)
C 0 .100000E+02 .000000E+00 .100000E+02 .000000E+00
C 1 -.250000E+01 .344096E+01 .425325E+01 .126000E+03
C 2 -.250000E+01 .812300E+00 .262866E+01 .162000E+03
C 3 -.250000E+01 -.812299E+00 .262866E+01 -. 162000E+03
C 4 -.250000E+01 -.344096E+01 .425326E+01 -.126000E+03
C
C
C FOR IIWSrRATIVE PURPOSES M INPU SEQECE xin C ULD HAVE BEEN
C GENERATED BY SPECIFYING dsorce = IS' AND WRITI1NG THiE APPROPRIATE
C FORMWA STA.EMA1I INIO SUER)TINE sainple. TEHE STAEM4ERM THIAT
C CULD BE USED M ACCCPLSH THIS ARE MRITINTO THE SUJ4 ASE
C (E ARE 'CN)EDWT'.
C
C

C******************MAIN PROGRAM

character infile*12, dption*3, 'de*1, dsorce*1, yscal*3
complex xin(O:255), xut(l:255)
real xmag(0:255), xph(0:255), mn

C PRtUPT USER FOR MTDE: BATC OR

write(*, 1115)

if((iiode.eq. 'y') .or. (mode.eq. 'Y')) then

C=

read(*,1119) infile
else
infile= iDF.dI
erxdif

C UNTRM DEFINED AS INU FILE. UNTIS=H2,3 DEFINED AS OUTESU FILES.

open (unit=1, filec=infile, status='lold',iostat=ierr, err=-999)
open (unit=2, f1 e= I DFT.CU')
pen (unit=3,file=DF.DAT')

C READ INPUT PARAIERS AND CONDUJCT ERIER CHECKS.

read(1,1000) N, dsore, option

183

if((N.lt.1) .or. (N.gt.256)) then
write(*, 1010) N
stop 'The allowed values for N are: 1 <= N <= 256.'
endif

if((option.eq. 'dft') .or. (option.eq. 'DFT')) then
option = 'DFT'
elseif((option.eq. 'inv') .or. (option.eq. 'INV')) then
option = 'INV'
else

write(*, 1011) option
stop 'The allowed values for option are: ''DFT'' or ''INV' '.'
enidif

if((dsorce.eq. 'f') .or. (dsorce.eq. 'F')) then
dsorce = 'F'
elseif((dsorce.eq. 's') .or. (dsorce.eq. 'S')) then
dsorce = 'S'
else
write(*, 1009) dsorce
stop 'The allowed values for dsorce are: ''S'' or ''F' '.'
endif

C DEFINE CONSTANTS.

en= N
k=8
pi = 4.0*atan(l.0)
numplts = 4
yscal = 'STD'

C FOR dsorce = 'F' READ THE INPUr SEQUENCE FROM THE INIU]T FILE.
C FOR dsorce = 'S' CALL sample TO GENERATE THE INPLT' SEQUENCE.
C THE INP)I SEQUENCE IS STORED IN THE ARRAY xin().

if(dsorce.eq. 'F') then
read(1,1001) (xin(i),i=0,N-1)
else

call sample(xin,N)
endif

C FOR TEST MODE ECHO INR' DATA ONTO THE MONITOR (UNIT =

if(mode.eq. 'Y') then
write(*, 1016) infileif (N. lt. 8) k--N
write(*,1017) N, dsorce, option

184

Write(*, 1012) k

write (*, 1015)

write(*,1020) i, xin(i)
continue

erdif

write(3, 2000) nurtipits

Write(3,2001) N
write (3, *) 'INDOH SFEJENCE (REAL)'

write(3,*) 'SAMIPL #I

do 55 i=0, N-1
write(3,2010) nm, real(xin(i))

55 continue

write(3,2001) NI
write (3, *) I INPUT SEWENCE (IMAGINARY)'
write(3,*) 'SAM4PLE #I
write (3, *) I'IMAG :-in()
do 56 i=O, N-i
m = i

write(3,2010) mn, aimag(xin(i))I

C WRITE INPUT' DATA INTlO FILE: DFT OUT.

write(2,1016) infile
write(2,1017) N, dsorce, option
write(2, 1014)
write(2, 1015)
do 2 1=0, N-1

write(2,1020) 1, xin(i)
2 continueI

C CALL dft OR invdft TIo PERFoRM TIHE SELECIE COMPlUTATION.

if(option.eq. 'INV') then
call invdft (N, xin, xout)
else

endif

C TRANSFORM OUTPUT DATA IRM1 EXP)NENTIAL FORM: xmag*EXP (j *xph).
C HiASE xpho(IS EXPRESSED IN DEGREES.

do 60 i=0, N-i
xmag(i) = cabs(xcut(i))
if(abs(real(xout(i))) .lt.l.oe-15) then

185

AA±4656 A COMPUTER PROGRAM PACKAGE FOR INTRODUCTORY 3/4
ONE-DIMENS IONAL DIGITAL SIGNAL PROCESSING APPLICATIONS
(U) NAYAL POSTGRADUATE SCHOOL MONTEREY CA F E HUDIK

UNCLAFSSIFIED MAR 88 F/G 12/5 NL

11111 .45u 2.0
1.01.8

1.5~ 3

if (aimag(xcAut(i)) .gt.1.Oe-15) xph(i)--90.0

else
xj±1(i) = (180../pi) *atan2 (aimag(xo.t(i)) ,real (xout(i)))

60 continue

C WRITE 'IRE 9-VTEM DAMA =I FIE: DEr. DAT.

write(3,2001) N

write (3,* 'SAMPLE # I
write (3, *) 'AGUTIIUDE'
do 57 i=0, N-i
ml= i
Write(3,2010) nn, xnmag(i)

57 continue

write(3,2001) N

write(3,*) 'SAMPLE #1
write(3,*) 'PHSE (DEG),
do 58 i=0, N-i
n = i
write(3,2010) nm, xph(i)

58 continue

c WRImTEHIE amm~u DmT Inl FILE: DFT.Wr.

write(2, 1025)
do 5 i=0, N-i

5 continue

write (*, 1019)
999 close (unit=1l)

close (unit=-2)
close (unit=-3)

if(ierr.gt.0) then
write(*, 1116) infile, ierr
erniif

C ******** INP~r FOI4AT ~

1000 fonhat(i3,tll,al,t2l,a3)

1001 format(2flo.0)

186

I -

1009 format(lx, 'dsorce = ',al,2x, 'Error, illegal value for dsorce.')
1010 format(Ix,'N = ',i3,2x, 'Error, value of N not allowed.')
1011 format(lx,'option = ',a3,2x,'Error, illegal value for option.')
1012 Oformat(/,' THE FIRST ' ,il,' VALUES OF xin() ARE LISTED BELOW.'

1/,' VERIFY THAT THE DATA IS CORE. ',/)
1014 format(//,tl9, 'INFUT DATA' ,//)
1015 format(/,t4, 'SAMPLE #' ,t15, 'REAL' ,t29, 'IMAGINARY' ,/)
1016 format(//////,' I NU DATA SOCEILE: I, a12)
1017 format(' VALUE OF N = ',i3,5x, 'dsorce = ',al,5x, 'option = ',a3)
1019 OformatO(//,I TAHLAR UTPUT DATA IS STORED IN FILE: DFT. UT.'

1/,' 1PW~rfl DATA IS SIORED IN FILE: DFT. DAT.')
1020 format(t6,i3,t13,2(e12.6,2x))
1025 0format(///,t33, 'WFPuT DImA',//,t4,'SAMPLE #',t17,'REAL',

1t33, 'IMAGINARY' ,t49, 'MAGNITI1' ,t67, 'PHASE' ,/,t65, ' (DEGREES)')
1030 format(t5,i3,t5,4(e12.6,4x))
1115 Oformat(lx, 'DO YOU WISH To RUN HIS PRGRAM IN TEST',

1' ITDE ? (Y/N) <Ci> : ',\,)
1116 Oformat(///, lx, 'ERROR OPENING INPUT FILE: ',a12,/, lx, 'PROGRAM',

1' TERMINATED. ',/,x, I'ERROR CODE: ',i4,//)
1117 format (al)
1118 Oformat (/////, 1x, 'TYPE THE NAME OF YOUR DATA FILE FOLLCWED',

1' BY <CR>.',/,' IF YOU DESIRE TO MAIKE A T T U3N USING HE',
2' SAMPLE DA.T ALREADY ST'IED',/,' IN THE FILE: DFT.TST',
3' TYPE: DFI.TST <CR>',/,' FI AME: ',\,)

1119 format(a12)
2000 format (il)
2001 format(i3)
2010 format(el2.6,2x,e12.6)

end

C SUROUrINE: invdft

C PURPOSE: THIS SUE)rINE ACCEPTS AS INPUT THE COMAPLEX ARRAY
C xin(), CQMRknS THE INVERSE DFT OF THE ARRAY, AND
c R THE RESULTS IN THE ARRAY xout().

subroutine invdft (N, xin, xout)
ccmplex xin(O:N-1), xout(0:N-1)

en = N

187

C COPUTE THE COPLEX aO)UGAE OF THE INRT SEQUECE.

do 70 i=0, N-i
xin(i) = conjg(xin(i))

70 continue

C COMMJTE THE DISCRETE FOURIER TRANSFORM OF THE ARRAY.

call dft(N,xin,xout)

C 00RMITE THE COMPLX ONJUGE OF THE RESULTING ARRAY.

do 80 i=0, N-i
xout(i) = conjg(xout(i))/en

80 continue

returnend

C SUJRINE: dft

C PURPOSE: THIS SUB7TINE ACCEPITS AS INPUT ME COMP!LEX ARRAY
C xino, COMPUr S ME DISCRETE FURIER TRANSFUR4 (DFT)
C OF THE ARRAY, AND RMTRS THE RESULTING SEQENCE IN THE
C COMPLEX ARRAY xouto.

subroutine dft (N, xin, xout)
complex xin(0:N-l), xout(0:N-1), w, wm

pi = 4.0*atan (1.0)
en = N

if(N-l.eq.0) then
xout(o) = xin(o)
else

alpha = 2.0*pi/en
w = cmplx(cos(alpha) ,-sin(aipha))
do 100 k=0, N-i

wm = w**k
xout(k) = xin(N-l)
do 50 1=N-2, 0, -1

xout(k) = xout(k)*wm + xin(1)
50 continue
100 continue

erdif

return
end

188

C SUBROUTINE: samrple

C PJRPOSE: IIS SUBRJOTINE ALM THE USER TO GERAE SAMPLES
C OF A COTINUOUS FUNCrION. MDE SAMPLES ARE REITE
C TO THNUE MAIN GAM IN THE ARRAY xin().

subroutine sanple (xin, N)
canplex xin(O:N-1)

pi = 4.0*atan(l.0)
en=N

C DEVELOP THE SAMPING AIGORrM IN THIS SPACE. THE STAEMENTS
C TYPED IN MUST FOLLO STANDARD FORTRAN 77 IMES AND MAY USE
C FORAN 77 INTRINSIC FUNCTIONS SUCH AS: SINO, COS(, ABS() ...
C AN EXAMPLE IS SHOWN EELIW. THE INPUT SEQJCE MST BE SORMED IN
C THE ARRAY xin(). DFr.FOR MUST BE COPILED AGAIN BEFOR EXEWION
C IF THIS SU)E'FINE IS USED.
C
C *** EXAMPLE ***
C
C do 3 i=0, N-i
C if(i.le.4) then
C xin(i) = coplx(i,o.0)
C else
C xin(i) = cmplx(O.0,0.0)
C endif
C 3 continue

return
end

189

C PRDGR. FOR VERSION: 2/03/88
C
C
C PURPOSE: THIS PROGRAM COMPUTES THE PERIODOGRAM OF A CAUSAL
C SEQUENCE USING THE DISCRETE FOURIER TRANSFORM (DFT)
C TECHNIQUE. THE EQATION FO THE C JTATION OF THE
C N-POINT PERIODOGRAM IS: Sxx(k) = xk(k)*conjg(xk(k))/N
C WHERE THE ARRAY xk () CONTAINS THE VALUES OF THE DFT
C OF MHE INPUT ARRAY xn(), I.E., xk() = DFT[xno). THE
C PROGRAM CONSISTS OF A MAIN PROGRAM AND WO SUJROUINES.
C M1E SUBROTINE dft CXtPUrES THE DISCRETE FURIERL
C TRANSFOR4 OF THE INJT ARRAY, AND M1E M SU71NE
C sample AOS THE USER TO GENERATE THE INPU' DATA BY
C WRITING ME APPRRIATE EQJATIONS. IF THE USER ELE=
C TO GEVEPATE THE INPUT DATA BY USING THE SUBRTINE
C sample, ME EQUATIONS MUST BE WRITTEN INTO THE
C SU4TINE USING STANDARD FORTRAN 77 EXECUTBLE STATE-
C MENTS AND THE INPT DATA MUST BE STIORED IN THE ARRAY
C xn(). ALSO, IF EQUATIONS ARE WRITTEN INTO sample,
C TIHE PROGRM MUST BE COMPILED AGAIN BEFORE EXECUTION. THE
C RESULTS OF THE PERIODIOGRAM COMIUTATION ARE STORED IN
C THE ARRAY Sxxo(). THE USER HAS THE OPTION OF CAUSING THE
C OTPT TO BE CONVERTED TO DECIBELS. THE USER ALSO HAS
C THE OPTION OF SELECTING ONE OF TWO OPERATING MDDES: BATCH
C OR TEST. IN BATCH MDE THE A14OUNT OF INTERACTION WIH
C THE USER IS MINIMIZED AND IT IS ASSUMED THAT TEHE INPUT
C PARAMETERS HAVE BEEN STORED IN THE INPUT FILE 'PPDGR.IN'.
C IN THE TEST MODE THE USER IS PROE FR THE NAME
C OF THE INPUT FILE OR HAS THE OPTION TO PERFORM A TRIAL
C RUN USING THE DATA STORED IN THE FILE 'PRDGR4. TST'.
C IT IS RECOMENDED THAT FIRS-TIME USERS SELECT' TEST
C MODE WHEN PRPTE , AND MAKE A TRIAL RUJN WITH THE PRE-
C STORED DATA. ADDITIONALLY, THE TEST MDE ECHIOES
C PORTIONS OF THE INIUT DATA ONTO THE MDNITR TO ALO
C VERIFICATION OF ITS ACCURACY. THE OU' IS STORED IN
C TAHULAR FORK1 IN THE FILE 'PRDGRM.OUT' AND IN A FORM
C SUITABLE FOR P0I'DTING IN THE FILE 'DFr.DAT'.
C
C
****************************** IN ********************************

C
C
C THIS PROGRAM ASSUMES THAT THERE ARE 'N' CCtPLM DATA POINTS IN THE
C INPT SEQUENCE. THE INPUT SEQUENCE IS ASSUMED TO BE DEFINED IN
C HE INTERVAL: 0 TO N - 1. IF THE INMJH SEQENCE CONSISTS OF 'REAL'
C NURS, M1E IMAGINARY PART IS STORED AS 0.0. THE VALUE 'N' AS WELL
C AS THE OTHER PARAMETERS DESCRIBED BELOW SHOULD BE STORED IN THE
C INI:UT FILE 'PRDGRM. IN'. ALL OF THE READ STATEMENTS USED BY THIS
C PROGR1 REUIE FORMAITED INPUT. PARTICULAR AT]ODMON SHOULD BE

190

C PAID TO MiESE FORMATSI, ESPECa=L 'THE USE OF 'TfE DEC@L PINT TO
C DISTINUISH BEIWEN 'REAL' AND INTEGER DATA.

C
C NAME TYPE RANGE (ARRAYS) RESTRICTIONS
C - -_ _ _ _ _

C N INTEGER 1 <-- N <=-256
C dsorce CHARACTER IF' OR IS'
C yscal CHARACTER, STDI OR 'LOG'
C xri(COMPLEX 011,2 ... N-1 1 <= N <- 256
C
C WHiERE:
C
C N = AN INTEGER 'THAT SPECIFIES TH~E NUMBER OF VALUES IN 'THE INPUT'
C SEQUENCE.
C
C dsorce = A CHARACIER VALUJE OF I'FI OR '5' DENCITINiG WIHE UM
C INPUT! DATA IS TO BE READ FFt4 A FILE (F) OR TO BE
C GENERATED (S) BY A USER-DEFINED EQ~UATION LOCATED IN TIHE
C S~TN sauple.

C yscal = A CHARACTER, STRING SPECIFYING, THE DESIRED MAGNITUDE OPTION:
C 'STD' WI2LL PRODCE STANDARD MAGNTIUDE OUTRTT
C 'LOG' WILL PRODCE MAI'IUDE EXPRESSED IN DECIBELS (dB).
C
C xn() = 'THE ARRAY OF COPLEX INPUT DATA. IF dsorce = IF'
C IS SPECIFIED UMh USER MUST SUPPLY THE~ N INPU T
C VALUES IN TE FILE. IF dsorce = '5' 'ThEN THE USER
C HAS ELECTED TO GENERATE THE INPUT' SEQUENCE BY
C WRIT"ING TIHE APPROPRIATE FORTRAN STATEMENTS IN 'THE
C SPACE ALLOCATED IN SUROT7NE sample. IF TMI METIHOD
C OF DATA, GENERATION IS ELECTED 'TBE PRGAM MUST BE
C RECIMPILE BEFORE EXECUTION.
C
C NOTE: THE INPUT FO1M@T STATEENTS OCCUJR IN THE MAhIN PROGRAM
C FOLLCOVING THE CAPTION: ******** INPUT F~q;T
C 'THE FORM4 OF UlE INPUT DATA FILE IS:

C LINE# ENTRIES FORMAT

C 1 N,dsorce,yscal i4,tll,al,t21,a3
C 2 ... N+1 a1() 2f1O0

C
C NOTE 1. LINES 2 ... N+l ARE ONLY REQUIRED IF dsorce = F'
C IF dsorce = IS' THEN THE USER HAS ELECTED To GENERATE
C TBE N VAUES OF xm (IN SUBROUTINE saumple. THE USER
C MUST PROVIDE THE APPROPRIATE FORTIRAN STATEMENTS IN
C SUBROTINE sarple AND THE VALUES MST BE STORED IN THE
C IRRA xn.

191

C 2. THE FOIAT flO.0 USED FOR INPUT DATA PERJITS E
C DECIMAL POINT TO BE PLACED ANYWEE IN THE FIELD OF TEN
C COLUMNS AND ALSO ALLM THE re ETOEAL Fc~mAT To BE
C USED (E.G., 3146.2 = 3.1462E+03).
C
C
***************************** WI J ****************c
c

C THE INPUT DATA AS WELL AS THE OUTPUT DATA ARE STORED IN TAHULAR
C FUM4 IN ME FILE 'PRDG .OUT'. ADDITIONALLY, THE DIPUT SEQUENCE
C (REAL AND IMAGINARY) AND MhE OUTPU SEQENCE ARE STORED IN hE FILE
C 'PRDG(. DAT' To FACITA PLOTTING BY A SEPARATE, USER SUPPLIED
C PROGRAM. TBE F0AT OF THE DATA IN 'PRDGRK.DAT' IS: e12.6,2x,e12.6.
C THE FIR ENIRY CORSFPONDS TO THE ORDINATE VAE AND THE SECOND
C EI1, THE ABSCISSA VALUE. ADDITIONAL HEADER INF0-TION IS WRITTEN
C INTO 'PRDGRM.DAT' TO ALLOW FOR CONTROL AND LABELING OF EACH PLOT.
C
C
***************************** EXAMPLE *******************************

c
c
C THE INPUT PARAMETERS BELOW ARE STORED IN THE INPUT FILE
C 'PRDGRM.TST'. THERE ARE EIGHT POINTS IN THE INPJT SEQUECE AND
C THE GOAL IS TO CALOJLATE THE PERIODOGRAM OF THE DATA.
C
C
C 005 F STD
C 0.0 0.0
C 1.0 0.0
C 2.0 0.0
C 3.0 0.0
C 4.0 0.0
C
C
C THE RESULTING OUTPUT FILE 'PRDGRM. DAT' IS:
C
C INPUT DATA SCURCEFILE: PRDGRM.TST
C VALUE OF N = 5 dsorce = F MAGNIIUE OPTION =S
CC

C INPUT DATA
C xn()
c
C n REAL IMAGINARY
C 0 .0000E+00 .O000E+00
C 1 .1000E+01 .0000E+00
C 2 .2000E+01 .0000E+00
C 3 .3000E+01 .OOOOE+00
C 4 .4000E+01 .0000E+00
c
c

192

C
C
C OUTPUT DATA
C
C kc Sxo(k)
C 0 .2000E+02
C 1 .3618E+01
C 2 .1382E+01
C 3 .1382E+01
1C 4 .3618E+01
C!
C
C FOR IIIJSTRATIE PUJRPOSES TE INPUT SEQUENCE xn COULD HAVE
C BEEN GENERATE BY SPECIFYING dsorce = IS' AND WRITING TIHE
C APPROPIATE FDR1MZA STATEMENTS INTIO SUBROUINE sanpl~e. THE
C STITNE1I THAT COULD]BE USED TO0 ACCOMPLISH THIS ARE WRIT1I
C INTO THE SUBROUINE BUT ARE 'C344ENTED CUT'.
C
C

C********************MAIN MIZOGRAM ***~***********

character infile* 12, ylabl*14, yscal*3, uxmde*1, dsorce*1
character title*16
cuplex xn(O:255), xk(O:255)
real Sxoc(O:255), mr, Ik

C P~a1PT USER FOR MODE: BATCH OR TEST.

write(*, 1115)
read(*, 1117) mode
if((mode.eq. 'y') .or. (mode.eq. 'Y')) then

mxl~e =I I
write (*, 1118)
read(*, 1119) infile
else
infile = 'PRDGRK.IN'
erldif

C UNI'TI DEFINED AS INFUT FILE. UNITS-2 , 3 DEFINED AS OUTPUT FILES.

open (unit=l, file=infile, status-- 'old' iostat=ierr, err--999)
open (unit=2, file= ' F DGERI. UT')
open (unit=3 , file= I PPI0. DAT'1)

C READ INPUT PARAZ4EERS AND CONIJJCT ERIMJR (JHECKs.

read (1, 1000) N, dsorce, yscal

193

if((N.lt.l) .or. (N.gt.256)) then
writs(*, 1010) N
stop 'The allowed values for N are: 1 <=- N <-- 256'
endif

if((dsorce.eq.'f') .or. (dsorce.eq. 'F')) then
dsorce = I'F'I
elseif ((dsorce.eq. 's') .or. (dsorce.eq. IS')) then
dsorce = ISO
else

write(*, 1009) dsorce
stop 'The allowed values for dsorce are: ''S'' or ''F''.*'
erxiif

if ((yscal.eq. 'std') .or. (yscal.eq. 'STI) then
title = ' Periodogram
yscal = SO
ylabl = ' Soc (k) I
elseif ((yscal.eq. ' log') .or. (yscal.eq. I'LOG')) then

title = ' Log Periodogram'I
yscal = 'LOG'
ylabl = 'Sxoc(k) (dB)'
else

write(*,1128) yscal
stop I'Eror, yscal must be the stringI 'SI I' or I''LCG' '*I

endif

C FOR dsorce = 'F'I READ TIHE INPU' SB7MECE FROM4 THIE fl4PUI FIIE.
C FOR dsorce = 'S' CALL samp~le TO0 GEN4ERATE THE INPUT' SEQENCE.
C MIE INPUT SEECE IS S'IRE IN THE ARRAY xn 0

if(dsorce.eq. 'F') then

else
call sample(xn,N)

C DEFINE CONSTANTS

k =8
en = N
pi = 4.0*atan(l.0)
nunpits = 3

C FOR TEST MO)DE ECMO BMWU DAT9A ORM OITOR (UNIT=

if(xrode.eq. 'Y') then
write(*,1016) infile
if (N. lt. 8) k = N
write(*,1017) N, dsorce, yscal
write(*, 1012) k
write (*, 1015)

194

do 4 i=O, k-1
Write(*,1020) i, Xrx(i)

4 continue
erKdif

C W=IT 9M~ INP~r SEQUENCE flI FILE: PRDGPM. DAT.

write(3 ,2000) tmpits
write(3,200i) N
wrjte(3,*) 'mINu SEUENCE (REAL)'
write (3, *) I'A1PLE # (n)'
wrjte(3,*) 'REAL (xii)'
do 55 i=O, N-i

mf = i

55 continue

write(3,200i) N
write (3, *) 'fl{PU' SEQENCE (fl@WGIARY)'
write (3,*) ' SAMLE # (n) I
write(3,*) 'I@WIMARY (xn)'
do 56 i=0, N-i

mf = i
write(3,2010) mn, aimag(xn(i))

56 continue

C WRIT INPU~r DATA INMI wruTr FILE: PRDXGRK. CUr.

write (2,101i6) infle
write(2,10i7) N, dsorce, yscai
write(2, i014)
write (2, i0iS)
do 59 1=0, N-i

write(2,1020) i, xn(i)
59 continue

C CALL dft To0 CO4RM~ THE DISCRET'E FOURIER, TRANSFORM OF MhE
C R~MH SEQUENCE.

C THIE PERIODOGRAM COMPUrATION RESULTS FROM THE EQUATION:
C Sxoc(k) = xk(k)*conjg(xk(k))/N. THE SEQUENCE Sxoc(k) IS
C CNVERTED TOD DECIBELS IF yscai = LOG.

do 60 k=0, N-i
Sxx(k) = xk(k)*conjg(xk(k))/en

195

if(yscal.eq. 'LOG') then
if (Sxx (k). gt. 1. Oe-10) then
Sxx(k) = i0.0*logl0(Sxx(k))

else
Sxx(k) = -100.0

endifendif
60 continue

C WRITE RESULTS INIO OUPU FILE: PRDGRM.DAT.

write(3,2001) N
write(3,2002) title
write(3,*) ' k I
write (3,*) ylabl
do 57 k=0, N-i
kk = k
write(3,2010) kk, Sxx(k)

57 continue

C WRITE RESULTS INIO OU FILE: PRDGRM.OUr.

write(2,1025) ylabl
do 5 k=0, N-I
write(2,1030) k, Sxx(k)

5 continue

write(*, 1019)
999 close (unit=-1)

close (unit=2)
close (unit-3)

if(ierr.gt.0) then
write(*,1116) infile, ierr

erdif

C ******** INPUT FOAT ********

1000 format(i3,tll,al,t21,a3)
1001 fonnat(2f10.0)

C ********************************

1009 format(lx,'dsorce = ',a1,2x,'Error, illegal value for dsorce.')
1010 format(ix,'N = ',i3)
1012 Oformat(/,' THE FIRST ',il,' VALUES OF xn() ARE LISTED BELOW.',

1/,' VERIFY THAT THE DATA IS CORRECr. ',/)
1014 format(//,t22, 'INPU DATA' ,/,t25, 'X() ',//)
1015 format(t8,'n',t15,'REAL',t28,'IMAGINARY')
1016 format(//////,' INPr DATA SOLRCEFIIE: ',a12)
1017 Oformat(' VALUE OF N = ',iJ,5x, 'dsorce = ',al,5x, 'MAGNITUE ',

1'OPTION = ',a3)

196

1019 0fonat(//, ' TABUIAR OTPUT DATA IS STORED IN FILE: PRDGRM.CUT.'
1/,' PLOITING DATA IS SIORED IN FILE: PRDGRM.DAT')

1020 format(4x,i4,2(4x,e10.4))
1025 format(///,tl9, 'OUTUT DATA' ,//,t7, 'k' ,t12,all)
1030 format (t5, i3,4x, el0.4)
1115 0fonnat(Ix, 'DO YOU WISH TO RUN THIS PROGRAM IN TEST',

1' EDE ? (Y/N) <CR> : ',\,)
1116 Oformat(///, 1x, 'ERROR OPENING PUT FILE: ',a12, /,ix, 'PROGRAM',

1' T 2 ATED. ,//,x, 'ERROR CODE: ',i4,/////)
1117 format (al)
1118 Oformat (/////, lx, 'TYPE THE NAME OF YOUR DATA FILE FOLLOWED',

1' BY < .I, /,' IF YU DESIRE TO MKE A TEST RUN USING THE'
2' SAMPLE DATA ALREADY STORED' , /, ' IN THE FILE: PRDGR. TST',
3' TYPE: PRDGRM.TST <CR>',/,' FILENAME:

1119 format(a12)
1128 format(//////,t2,'The value of yscal is: ',a3,'.')
2000 format(il)
2001 format(i3)
2002 format (a16)
2003 format(a8)
2010 format (e12.6,2x, e12.6)

end

C SUBOTINE: dft

C PURPOSE: THIS SUBROUINE ACCEPTS AS INPUT THE COMPLEX ARRAY
C xn(, C7rES THE DISCRETE FOJRIER TRANSFORM (DFT)
C OF THE ARRAY, AND REIURNS THE RESULTING SEQUENCE IN THE
C OMPLEX ARRAY xko.

subroutine dft (N,xn,xk)
ccmplex xn(0:N-1), xk(0:N-1), w, wm

pi = 4.0*atan(l.0)
en = N

if(N-l.eq.0) then
xk(o) = xn(O)
else

alpha = 2.0*pi/en
w = cnplx(cos(alpha),-sin(alpha))

197

do 100 k=O, N-I
wm = w**k
xk(k) = xn(N-1)

do 50 1=N-2, 0, -1
xk(k) = xk(k)*wm + xn(1)

50 continue
100 continue

endif

return

C SUBPrfINE: sample
C
C
C PURPOSE: THIS SLE4UTINE AIWS IE USER TO GNERATE SAMPIES
C OF A CNTINUOS FUNCTION. THE SAMPLES ARE REITURNED
c TO MIE MAIN PFCGAM IN THE ARRAY)a .

tubroutine sample (xa, N)
ccomplex xn(0:N-1)

pi = 4.0*atan(1.0)
en = N

C DEVELOP THE SAMPLING AIGORfM IN THIS SPACE. THE S O"XI S
C TIYED IN MUST FOLLO STANDARD FORTRAN 77 MUM.ES AND MAY USE
C FORIMAN 77 INRINSIC FUNCTIONS SUCH AS: SINO, OOS(, ABS() ...
C AN EUMPIE IS SHOWN BELOW. THE INPUT DATA MUST BE STORED IN THE
C ARRAY xn(). IF THIS SUBOTINE IS USED, 'PRDGRR.FOR' MUST BE
C (XCPI.ED AGAIN BEFORE EXECUTION.
C

C *** EXAMPLE ***
C
C do 3 i=O, N-i
C xn(i) = caplx(i,0.0)
C 3 continue

return
end

198

C CONRDT.FOR VERSION: 2/03/88
C
C
C PURPOSE: THIS PROGRAM PERPFURS ANY ONE OF THE FOLLOWING FOJR
C COMUTATIONS GIVEN TWO 4COPL ARRAYS OF INPUT DTA:
C LINEAR CONVOLUTION (LOOK); LINEAR WMREATION (LCR)
C CIRCULAR (NMoIIION (CO); OR CIRCULAR CORRELATION
C (COOR). COVLUTION IS PERFORM BY COMPUTING THE DFT
C OF EACH ARRAY, MLTIPLYING THE DFrs TOGEE AND THEN'
C TAKIG THE INVERSE DFT OF THE RESULTING ARRAY.
C CORRELATION IS PERFORMED IN IHE SAME MANNER EXCEPT
C THAT THE CONUUGATE OF THE DFT OF ARRAY #1 IS MULTIPLIED
C BY HE DFT OF ARRAY #2. M1E RESULT OF THIS COMPUTATION,
C GIVEN HE INPUT SE1JENCES Xl AND X2, IS THE CORRELATION
C SEQUENCE Rxlx2. THE PROGRAM CONSISTS OF A MAIN
C PROGRAM AND FIVE SUTrINES. THE SUBRUTINE zeroad
C EXTENDS THE INPUT ARRAY PASSED TO IT BY ADDING AN
C APPROPRIATE NUMBER OF ZEROES TO THE ORIGINAL INPUT DATA
C TO CEATE AN ARRAY OF SUITABLE LENGTH FOR THE INEAR
C CU NOLUfION/CORRETATION ALORITHMS. THE SUYI'NE
C dft COPFUES THE DISCRETE FOURIM TRANSFORM OF AN
C ARRAY. THE SU JTINE invdft COMPUTES MIE INVERSE
C DISCRETE FURIER TRANSFORM OF AN ARRAY. TIHE TW
C sU XINE sampll AND savpl2 ALLOW HE USER TO
C GEDERATE EITHER. OF THE INPUT ARRAYS BY WRITING THE
C APPROPRIATE EQUATIONS. IF THE USER COOSES TO
C GENERATE THE INP DATA BY USING =M OF THE sanpl
C SM E(s), THE UAMATIONS MUST BE WRITEN INO THE
C BROUH INE(S) USING STANDARD FORTRAN 77 EXCUABLE
C STATEMENTS AND IHE VALUES GEERATED MJST BE STORED
C IN THE ARRAYS xnl() AND xn2(). THE USER HAS THE
C OPTION OF SEIECrNG ONE OF TWO OPERATING MODES: BATCH
C OR TEST. IN BATCH MOM THE AMUNT OF INTERACTION
C WITH THE USER IS MINIMIZED AND IT IS ASSUMED THAT 'THE
C INP PARAMETERS HAVE BEEN STORED IN THE INPUT FILE
C 'CONCODT.IN'. IN TEST MODE THE USER IS PROPTED
C FOR THE NAME OF THE INPUT FILE AND HAS THE OPTION
C TO PERFORM A TRIAL RUN USING THE DATA STORED IN
C THE FILE 'CONCORDT.TST'. IT IS RE MENDED THAT FIRST-
C TIME USERS SELECT THE TEST MODE AND PERFORM A TRIAL
C RUN WITH THE PRESIORED DATA. THE TEST MODE ECHOES
C PORTIONS OF THE INPUT DATA ONTO THE MONITOR TO ALLOW
C VERIFICATION OF ITS ACCURACY. THE OUTPUT OF THE
C PROGRAM 'CONCORDT. FOR' IS STORED IN THE ARRAY xn3(.
C THE CUTi R IS STORED IN TABIAR FORM IN THE FILE
C 'CONCURDT.OT' AND IN A FORM SUITABLE FOR PLOTTING
C IN THE FILE 'CONCORDI.DAT'.
C
C
***************************** *******************

c

199

C
c THIS PQ4AM ASSUMES THAT IEME ARE TWO SEMENCES OF INPU DATA
C STORED IN THE ARRAYS xnl () AND xn2() OF LENGH 'N1' AND 'N2',
C RdE -CrIVELY. THE ARRAYS ARE ASSUMED TO BE (OPEX. IF THE
C ARRAYS COtIAIN 'REAL' VALUES CY, THEN THE IMAGINARY PART IS
C SrCED AS 0.0. THE INPUr SEQU1CES ARE ASSEHM TO BE DEFIED
C IN THE INTERVALS 0 TO NI-i AND 0 TO N2-1, R EIIVELY.
C THIS P AM AL.OWS H USER THE OPTION OF EIHER READING THE
C THE INiUT ARRAYS FRM A DATA FILE OR OF GENERATING THE INPUT
C VALUES FRO AN ITMATIVE BJATTICN IN THE sampl SUMUlfIE (S).
C THE PARAMEER IBED BEOW ALLOW THE USER TO SEECT MHE
C ESIRED OPTIiS AND 'IESE PARAMEI'R MLST BE STORED IN THE INPUT
C FILE '(XtDRD.IN'. ALL OF THE READ SATEMEN'S USED BY THIS
C P AM REUIRE F*TD INPUT. PARTICULAR AIE'II'(SHOULD BE
C PAID TO THESE P1ATS, ESPECIALLY HE USE OF MHE DECIMAL POINT TO
C DISTINGUISH BETWEEN 'REAL' AND INTEGER DATA.
C
C
C NAME TYPE RANGE (ARRAYS) RESTRICTIONS
C --

C Ni INTEGER 1 <= Ni <= 128
C dsrcel CHARACTER 'F' OR ''
C N2 INTEGER 1 <= N2 <= 128
C dsrce2 CHARACTER 'F' OR 'S'
C option (HARACTER ONE OF THE FOLLOWING:
C 'ICN' 'IOR' 'COOK' '0OR'
C
C xnl 0 C4P=LEX O,1,...,N1- 1 <- N1 <- 128
C xn2() 001MPtEX OI...,N2-1 1 <= N2 <= 128
C
C WHERE:
C
C Ni = AN INTEGER TIHAT SPECIFIES THE NUMBER OF POINTS OF INPUT
C DATA TO BE STORED IN THE ARRAY xnl().
C
C dsrcel = A CHARACTER VALUE OF 'F' OR 'S' DEN07GIIN WHETHER, THE
C INPUT ARRAY xmi() IS TO BE READ FROM A FILE (F) OR TO
C BE GENERATED (S) BY A USER-DEFINED EVJATION LOCATED IN
C THE SLWDOJIE sampll.
C
C N2 = AN INTEGER THAT SPECIFIES THE NUMBER OF POINTS OF INPUT
C DATA TO BE STORED IN THE ARRAY xn2().
C
C dsrce2 = A CHARACTER VALUE OF 'F' OR 'S' DENOTING WHETHER THE
C INPUT ARRAY xn2() IS TO BE READ FROM A FILE (F) OR TO
C BE GENERATED (S) BY A USER-DEFINED EQ ATION LOCATED IN
C THE SUBOTINE sampl2.
C

200

C option = A CHARACTER SiRll OF FXR TETTERS DE4TN TI-E
C (7' N DESIRED. 'tLCl' = LINEAR CONVOLUTION
C 'LTXR' = LINEAR CORRELMTI
C 'OON' = CIRCUM CONVOIITION
C 'ClR' = CIRCULAR CRREATION
C
C xn1 () = THE FIRST ARRAY OF COMPLEX INPUT DATA. IF dsrcel = 'F'
C IS SPECIFIED THE USER MUST SUPPLY THE N1 INPUT
C VALUES IN THE FILE. IF dsrcel = 'S' TE USER HAS
C ELECTED TO GENERATE THE INPT DTA BY PROVIDING
C THE APPROPRIATE FORTRAN STATENTS IN TiE SPACE
C AILOCATED IN SUBRTINE sampll. IF TIS MEII-D
C OF DATA GENERATION IS ELCE THE PROGRAM ES BE
C REOX3MPnED BEFRE EXECTION.C

C 2() = THE S D ARRAY OF COMPLEX INPUT DATA. IF dsrce2=
C 'S' IS SPECIFIED MHE USER HAS EECTED TO PROVIDE THE
C APPROPRIATE FORTRAN STTENTS IN THE SPACE ALLOCATED
C IN SUROUTINE sanpl2. IF THIS METHOD OF DATA
C GENERATION IS ELECTED THE PROGRAM MUST BE RECrHPILED
C BEFORE EXEOTION. IF dsrce2 = 'F' THE THE USER MUST
C SUPPLY THE N2 INPUT VAIUES IN THE FILE.
C
C NOTE: THE INPUT FORMAT STATEMNS OCCUR IN ME MAIN PROGRAM
C FO1OL NG THE CAPTION: ******** IN OI@T ****
C THE POWM OF THE INPUT DATA FILE IS:
C
C LINE# ENTRIES FORMAT
C
C 1 N1,dsrcel i3,tll,al
C 2 N2,dsroe2,option i3,tll,al,t21,a4
C NOTE 1 xn () 2f10.o
C NOTE 2 xn2() 2f10.0
C
C NOTES 1. IF dsrcel = 'F' THEN ME LINES 3...N1+2 MUST CONTAIN
C THE VALUES TO BE READ INTO THE ARRAY xnl(). EACH VALUE
C IS READ AS A C(XMPIE NUMBER, I.E., REAL IMAGINARY.
C IF dsrcel = 'S' THEN THE USER HAS ELECTED TO GENERATE
C MHE VALUES FOR xnl() IN 'ME SUBROTINE sampll. THE USER
C MUST THEN PVIDE THE APPROPRIATE FORTRAN STATENTS
C IN SUBOTINE sampll TO GENERATE xnl().
C
C 2. IF dsrce2 = 'F' T1W THE NEXT N2 LINES CONTAIN THE
C VALUES TO BE READ INTIO THE ARRAY m2 (). EACH VALUE IS
C READ AS A COMPLEX NUMBER, I.E., REAL IMAGINARY. IF
C dsrce2 = 'S' ITHEN THE USER HAS ELECTED TO GENERATE THE
C VALUES FOR xn2 () IN THE SUBOTINE sampl2. THE USER
C MUST THEN PROVIDE THE APPROPRIATE FORIRAN STATEENTS
C IN SUOTINE savpl2 TO GENERATE THE ARRAY xn2 ().
C

201

C 3. THE FORAT 2f10.0 USED FOR INPUT DATA PEE;&MS THE
C DECIMAL POINT TO BE PIACED ANYWHERE IN THE FIELD OF TEN
C COMM AND ALSO ALIOM IE EXPCNENIAL FO4AT TO BE
C USED (E.G., 3146.2 = 3.1462E+03).
C
C 4. IF cptin = 'COON' CR 'CCOR' Ni MJST BE BQLAL TO N2.
C
C
c***************************** ****P*

C
C
C M11E INPUT DATA AS WELL AS TiE CUM" DATA AIE SICRED IN TAHJIAR
C FORM IN THE FILE 'ORM.OUT'. ADDITIONALY, THE INUT SEQENCES
C AND ME an7)T SBETNCE ARE WRITTN INTO THE FILE '(ltCORD. DAT'
C TO FACILITE PLOITING BY A SEPARATE, USER SUPPLIED PROGAM. M1E
C FMAT OF THE [ATA IN ' NCORM.DAT' IS: e12.6, 2x, e12.6. HE
C FIRST ENY CORRESPONDS TO THE ORDINATE VALUE AND THE SECOND IMY,
C ME ABSCISSA VALUE. ADDITIONAL HEADER INFURYATON IS WRITTEN INTO
C 'CONC0RDT. DAT' TO ALUCW FOR 0)N'IRL AND LABELING OF EACH PLOT.
C
C
***************************** EXAMPLE ********************************

C
C
C THE INPUT PARAMERS BELOW ARE STORED IN THE INPUT FILE
C 'CONCORT.TST'. THE PRGAM REAS THE FIRST 4 VALUES INTO xnl()
C (dsrcel = 'F', Ni = 4), AND REA ME NEXT 5 VALUES INTO xn2()
C (dsrce2 = 'F', N2 = 5). hE GOAL IS TO CALCULATE THE LINEAR
C COMVOTI0N OF THE TWO INPUT ARRAYS.
C
C
C 004 F
C 005 F LCON
C 1.0 0.0
C 2.0 0.0
C 3.0 0.0
C 4.0 0.0
C 5.0 0.0
C 4.0 0.0
C 3.0 0.0
C 2.0 0.0
C 1.0 0.0
C
C
C THE RESULTING OUTRT DATA FILE 'CONC0RDT.UT' IS:
C
C INPL)T DATA SCURCEFILE: NCORDT.TST
C N1 = 4 dsrcel = F
C N2 = 5 dsrce2 =F
C option =

202

IC

C

C
C xnl.rDAh

C n REAL IMAGINARYf
C 0 .100000E+01 .OOOOOOE+00

* C 1 .200000E+01 .OOOOOOE+00
C 2 .300000E+01 .000000E+00
C 3 .400000E+01 .000000E+00
C
C xn2(
C n REAL IMAGINARY
C 0 .500000E+01 .OOOOOOE+00
C 1 .400000E+01 .000000E+00
C 2 .300000E+01 .OOOOOOE+00
C 3 .200000E+01 .000000E+00
C 4 .100000E+01 .000000E+00
C
C
C OrUrPJ DAT
C
C xra3(
C n REAL IMAGINARY
C 0 .500000E+01 .953674E-06
C 1 .140000E+02 -. 303457E-05
C 2 .260000E+02 -. 756009E-05
C 3 .400000E+02 -. 404610E-05
C 4 .300000E+02 .217716E-05
C 5 .200000E+02 .762858E-05
C 6 .110000E+02 .892130E-05
C 7 .400001E+01 .472045E-05
C
C
C FOR IUJSmRAa'I I~ROSES TIHE RNl SF)WJNS xnl (AND xn2 (
C (XOJW HAVE BEN GFE RATE BY SPECIFYING dsrce# = 'S5' AND WRITING
C THiE AFF)PIATIE FaRAN S TEMU n4TO THE saiipl# SURO=rIES.
C MDE STEUM THIAT COULD BE USED TOD AC3LISH 'fMl ARE WRITTEN
C INID TH RESPEICTIVE arr~INS U ARE 'CXH4ENTED wr'I.
C
C

C**********************MAI PROGRAM

character infile* 12, option*4, 1mde*1, dsrcel*1, dsrce2*1
character title*20
cmpl~ex xnl(0:255), xn2(0:255), ai3(Q:255)
cmplex xkl(0:255), xk2(0:255), xk3(0:255)
real mf

203

C PRCIPr USER FOR MOME BAC OR TEST.

wrte (*, 111)

read (*, 1119) infile
else

infile cm'coN~rIY. IN'
erxlif

C UT1-- EEFINED AS INP7W FIE. UNTS=-2, 3 DEFINE AS W1'nIM F=IE.

open (unit-l , f ile~Inile, statusq= ' old' iostat--ierr, err--999)
open (urnit--2, f ile='ICtffapW.Wr'T)
open (unit-3, ,file=, QDNmRmr. DA,

C FEAD INPUT PARAZ.EIS AND oDNIXcr ER1~)R ~cma.

read (1,l1000) Nl, dsroel
read(l,l0Ol) N2, dsrce2, option

if ((dsrcel.eq. 'f') .or. (dsrcel.eq. 'F')) then
dsrcel = I'FI
elseif ((dsrcel-eq. 's').or. (dsrcel.eq. 'S')) then

dsrcel = I
else

wrjte(*,1009) 'dsrcS1 ' dsrcel
stop 'The allowed values for dsrcel are: ''F'' or ''S''.*'

endif

if((dsrce2.eq.'f').or.(dsrce2.eq.'F')) then
dSrce2 = I'FI
elseif((dsrce2.eq.'s').or.(dsrce2.eq.'S')) then

dsrce2 = 'S5'
else
wrt(*,J.009) 'dsrce2 = ,dsrce2

stop 'The allowed values for dsrce2 are: 'I'" or ''S'' *'

endif

if((option.eq. 'ccn') .or. (option.eq. 'COOlN')) then
option = 'COON'
title = 'Circular Convolution'
elseif(((option.eql. 'ccor') .or. (option.eq. 'CCDR')) then

option= I= M
title = 'Circular Correlation'
elseif((option.eq. 'lcon') .or. (option.eq. 'ICON')) then

option = 'ICON'
title = 'Linear Conivolution'
elseif(((option.eq. 'lcor') .or. (option.eg. 'O)MR')) then

option = IM

204

title = 'Linear Correlation'
else
write(*, 1011) option
stop 'The allowd values for option are: COXN, CDR, jON,=C.'
endif

if((N1.lt.1) .or. (N1.gt.128)) then
write(*,1010) 'Ni = ', N1
stop 'The allowed values for N1 are: 1 <= N1 <- 128'
erdif

if((N2.1t.l).or. (N2.gt.128)) then
write(*,1010) 'N2 = ', N2
stop 'he allowed values for N2 are: 1 <= N2 <= 128'
erdif

if((option.eq. 'CON') .or. (option.eq. 'CCOR')) then
if (Nl.ne.N2) then
write(*,1008) option, N1, N2
stop 'For option = ''CCOR'' or "CCN'' N1 must equal N2.'

endif
N3 = NI
endif

C EFINE CONSTANTS.

- k=8

numplts = 6

C FMR dsrce# = 'F' READ INPL~R SEQUENCE (S) FROM THE DA FILE.
C FOR dsrce# = 'S' CALL sampl# To GERATE THE INI SEQUENCE(S).
C THE INPUT SEQUENCES ARE SRED IN ME ARAYS xm(), xn2().

if(dsrcel.eq. 'F') then
read(1,1002) (xnl(i),i=0,N1-1)
else

call sampll(xnl,N)
endif

if(dsrce2.eq. 'F') then
read(l,1002) (xn(i),i=0,N2-1)
else

call sampl2(xn2,N2)
endif

C FOR TEST MODE ECHO INFUT DATA ONTO MONITOR (UNIT =

if(mode.eq. 'Y') then
write(*, 1016) infile
if((N1.lt.8) .or. (N2.lt.8)) k = min(N1,N2)
write(*,1017) 'Ni = ', Ni, 'dsrcel = ', dsrcel

205

write(*,1017) 'N2 = ', N2, 'dsrce2 = ', dsrce2
write(*, 1018) option
write(*,i1012) k
write (*, 1013)
do 3 i=0, k-i

write(*,1020) i, xnl(i), xn2(i)
3 conrtinue

C WRIE MIE ThPr SEQUENCES I= FILE: (2JNCORDr. DATr.

write (3,2000) numplts
write(3,2001) Ni
write(3,*) 'NUT SEQUENICE xml (REAL)'
write(3,*) 'SAMPLE # (n)'

do 54 i=0, Ni-i
m = i

write(3,2010) mn, real(m1l(i))
54 continue

write(3,2001) Ni
write (3, *) INREI SEQUEN~CE xnl (IMAGIR)'
write (3,* 'SAMPLE # (n)'

do 55 i=O, Ni-i

mf = i

55 continue

write(3,2001) N2
write (3, *) hINPUr SEQUEN~CE xm2 (REAL)'
write(3,*) 'SAMPL.E # (n)'
write(3,*) 'REAL xn2O)'
do 56 i=O, N2-1
mf = 1

write(3,20i0) mn, reai(xn2(i))
56 continue

write(3,200i) N2
write (3, *) INRUT SFEJFNCE xn2 (IMAGINAR)'I
write (3, *) ' SAMPLE # (n)'I
write(3,*) 'IMAG ,'20)'
do 57 i=0, N2-1
mf = i
write(3,2010) mn, ainiag(xn2(i))

57 continue

C WRIT INPU~r DATA INTO0 FILE: CON(X)RDr.CITr.

write(2, 1016) infile
write(2,i0i7) 'Ni = ', Ni, Idsrcei = ', dsrcei

206

write(2,1017) IN2 = ', N2, 'dsrce2 = ,dsrce2

write (2,1018) option
write(2,1014) 'INPUT DAMA'
write (2, 1015) 1 xril
do 60 i=0, Ni-i

write(2,1026) i, xnl(i)
60 continue

write(2,1015) Oxn2O)'
do 61 i=0, N2-1

61 continue

C FIOR LINEAR (fNIDIIN OR LINEAR CORREL~ATION BOTH INPUT' ARRAYS
C A]RE ZERO-PADEDED M1 LE2NGl- N3 = N1 + N2 - 1.

if((option.eq. ICON') .or. (option.eq. 'ICOR')) then
N3 = Ni + N2 - 1
call zeropad(xail,N1,N3)
call zeropad(xm2 ,N2 ,N3)
endif

C COMM 'THE DFT OF BOTH INPUT S!EENCES.

call dft(N3 ,xnl,xkl)
call dft(N3,xai2,xk2)

C PERFO1R4 CrNVOWDITION COMPUTATION.

if((option.eq. 'LCOI).or. (option.eq. 'COON')) then
do 22 i=0, N3-1

xk3(i) = xkl(i)*xk2(i)
22 continue

call invdft (N3, xk3, xn3)
erdif

C PERFaM~ CORRELAION C014UrATION.

if((cption.eq. 'LCOR') .or. (option.eq. 'CcoR')) then
do 23 i=0, N3-1

xkl(i) = conjg(xkl(i))
xk3(i) = xkl(i)*xk2(i)

23 continue
call invdft(N3,xk3,xn3)
erdi~f

C WRTE RESULTS INTO FILE: CONCX)RDr. DAT.

write(3,2001) N3
write(3 ,2003) titleI
write(3,*) 'SAMPLE # (n)'
write(3,*) 'REAL xn3O)'
do 58 i=0, N3-1

207

nn=i
write(3,2010) mf, real(xn3(i))

58 continue

write(3,2001) N3
write (3,2003) title
write(3,*) 'SAMPLE # (n)'
write(3,*) 'fl@G xn30)'
do 59 i=0, N3-1

Mn= i
write(3,2010) mn, ahl~ag(xn3(i))

59 continule

C WRrIT RESUTS IRM FILE: ct)NCxRIMrEwr

write(2,1014) 'wrUrP DAMA'

do 62 i=0, N3-1
write(2,1026) i, mn3(i)

62 continue

write(*, 1019)
999 close (unit=1l)

close (unit--2)
close (unit=-3)
if(ierr.gt.0) then

write(*, 1116) infile, ierr
erdif

C ******** INPUr FGIM4AT

1000 format (i3, tll, al)
1001 format (i3,tll,al, t21, a4)
1002 format(2f1.0)

C ****************

1008 Oformat(I option = ',a4,', N1 ',i4,', N2 = ,i4,', Error,',
1' Ni is not equal to N2.')

1009 formt(lx,a9,al,' Error, value not alliwed.')
1010 format(lx,a5,i4,2x,1Error, value not allowed.')
loll format(lx, 'option = ',a4,2x, 'Error, illegal value for option.'
1012 Ofomt(/, t2, I THE FIRST'I ,iD,'I VAILUES OF INP)T DATA ARE LISTED '

1/,I' BELOW, VERIFY 71HT THE DATA IS CIDRRECTI,/)
1013 0forniat(t21, 'xnl() 1,t53, ',m2()',/,t4, n,tll, REAL',t27,

1'IMAGINARY' ,t43, 'REAL' ,t59, 'IMAGINARY')
1014 format(//, t2, all,/)
1015 format(/,t2l,a7,/,t6, 'n',t13, 'REAL' ,t29, 'IMAGINARY')
1016 format(///,' INPU7T DATA SCURCFILE: ',a12)
1017 foruut(t2,a5,i3,5x,a9,al)
1018 format(t2, #option = 1,M4)

208

11111 1111F 111 111111

1019 Oformat(//,' TAMJLAR CU= DATA IS STORED IN FILE: 0)NCORDT. OT.'
1/,' PLITING DATA IS STORED IN FILE: C0NCORDr. DAT.')

1020 format(t4,il,4(4x,el2.6))
1026 format(t4,i3,2(4x,el2.6))
1115 0format(lx, 'DO YOU WISH TO R3N = PROGRAM IN TEST',

1' ME ? (Y/N) <CQ> : ',\,)
1116 0format(///,lx, 'ERROR OPErNI INTI'T FILE: ',al2,/,lx, 'PROGRAM',1' TEMI %TE. ',/,x, I'ERROR CODE: 'i4,//)
1117 format (al)
1118 Oformat (/////, lx, 'TYPE TH NAME OF YOUR DATA FILE FOLWED',

1' BY <CR>.',/,' IF YOU DESIRE TO MARE A TEST RUN USING THE',
2' SAMPLE DATA AIREADY STORED',/ I,' IN THE FILE: CONCfRDT.TST',
3' TYPE: CONCORDT.TST <CR>',/,' I: ',\,)

1119 format(a12)
2000 format (il)
2001 format (i3)
2003 format (a20)
2010 format(el2.6,2x,el2.6)

end

C SUBRUT'INE: zeropad

C PURPOSE: THIS SUBOTINE ACEPTS AS INPUT THE CPLEX ARRAY xn()
C OF LENGTH N AND ZERO PADS THE ARRAY TO LENGTH N3.

subroutine zeropad (xn,N,N3)
ccuplex xn(0:N3-1)

do 33 i=N, N3-1
xn(i) = cmplx(0.0,0.0)

33 continue

return
end

C SUBROUINE: invdft

C PUROSE: THIS SUEPTUNE ACCEPrS AS INPUT THE COKPLEX ARRAY
C xn () AND CM= THE INVERSE DFT OF THE ARRAY. THE
C WUTH IS STORED IN THE COMPLEX ARRAY xout (.

subroutine invdft (N, xin, xout)

complex xin(0:N-1), xout(0:N-1)

en = N

209

en=N

C CtO4R~rE THE~ OMIPLEX C ONGIE OF 'THE INPUT DAA.

do 70 i=0, N-i
xin(i) = conjg(xin(i))

70 continue

C COMIUE THE DISCRETE FtZJRER. TRANSFORM' OF TIHE ARRAY.

call dft (N, xin, xout)

C COMRMr TIHE COMM CONJUGATE OF TIHE RESULTING ARRAY.

do 80 i=0, N-i
xcoIt(i) = conjg(xout(i))/en

80 continue

return

C SUBROUINE: dft

C PRPOSE: THIS SUBROUMIE ACCEIS AS lIPUT THiE COMPLEX ARRAY
C xino, COMUTES 'THE DISCETIE FM1RI! TRIANSFORM (DFT)
C OF THIE ARRAY, AND RIUM~ 'THE RESMTING SETh1ICE IN THIE
C COMPLEX(ARRAY xouto.

subrouitine dft (N, xin, xout)

pi = 4. 0*atan (1. 0)
en = N

if(N-1.eq.0) then
xoult(0) = xin(0)
else

alpha = 2.0*pi/en
w = an1x (cos (alpa), -sin (alpha))
do 100 k=O, N-i

win = w**k
xcut(k) = xin(N-1)
do 50 1=N-2, 0, -1

xcut(k) = xout(k)*wmixin(1)
50 continue
100 continue

erdif

return

210

C SUBROTINE: sarplil

C PURPSE: THIS SUBROUTINE AJI-WS THE USER To GENERATE SAMPLES
C OF A CONTINUOUS FUNCTION AND STORE THEK IN THE ARRAY
C xnl (). IF dsrcel = '' SITH =E MAIN PROAM WILL CAL
C THIS SUJTINE TO GENERATE THE VALUES FOR xml() .
C IF dsrcel DOES NOT EQUAL 'S' THEN THIS SUBOTINE WILL
C NOT BE CALLED BY THE MAIN GR"M.

subroutine sanpll (xnl, Ni)
cocplex xnl (0 :NI-1)

pi = 4.0*atan(l.0)
enl = N1

C DEVELOP THE SAMPLING AIGORITIN FOR xnl () IN THIS SPACE. THE
C ST!ATE TS TYPED IN MUST FOLLOW STANDARD FORTRAN 77 RULES AND
C MAY USE FORTRAN 77 INTRINSIC FUNCTIONS SUCH AS: SIN(),OS() ...
C AN EXAMPIE OF AN AIGORIThM GENERATING VALUES FOR xm1() IS SHOWN.
C

C *** EXAMPLE ***
C

C do 6 i=O, Ni-i
C xnl(i) = cinplx(i+1.0,0.0)
C 6 continue

C*** ** *** ***

return
end

C SUROTINE: sampl2

C PURPOSE: THIS SUBOTINE AtIDWS THE USER To GENERATE SAMPLES
C OF A CONTINUOUS FUNCTION AND STORE Th4E IN THE ARRAY
C xn2(). IF dsrce2 = 'S' THEN THE MAIN PROGRAM WILL CALL
C THIS SUBOTINE TO GENERATE THE VALUES FOR xm2().
C IF dsrce2 DOES NOT EQUAL 'S' THEN THIS SUBRUTINE WILL
C NOT BE CALLED BY THE MAIN PROGRAM.

211

subrcutine sampl2 (mn2 ,N2)
ccup1ex xn2(O:N2-1)

pi 4.O*atan(1.O)
en2 =N2

C DEVELODP TIHE SAMULNG AILORMnM FOR xm2 () IN TIHS SPACE. MIE
C SAEMERM TYPED IN MUJST IFOLLUM STANDARD FORTRAN 77 RUTLES AND
C MAY USE FORTRAN 77 INTRINSIC FLINCTIONS SUCH AS: SIN(),CflSOC ...
C AN EXAMPLE OF AN AIGORII7M GERAMW VAILJhS FOR xn2 C)IS SHCWN.

C *** EXAM4PLE *

C do 7 i=O, N2-1
C xn,2(i) = ctplx(5.O-i,O.O)
C 7 continue

rebtrn

212

C FFT.FOR VERSION: 2/03/88
C
C
C PURPOSE: THIS PROGRAM COMPUTES THE DISCRETE FOURIER TRANSFR4
C OR HE INVERSE DISCRETE FRIE TRANSFORM OF A SET OF
C CO(PM IN1W DAMT USING A RADIX-2, DECIMATION IN TIME
C (DIT) FAST FOURIER TRANSFORM (FFT) ATIH1. ME
C PAM CONSISTS OF A MAIN PROGRAM AND FOUR SUB-
C ROUTINES. IRE SURUTINE reversal REARRANGES THE
C INPUT INTO, 'BIT-REVERSED' ORDER; THE SUBJTROUINE fft
C COMUTES ME FAST FtURIER TRANSFORM; MIE SUBOUTINE
C invfft COMPUTES THE INVERSE FAST FOURIER TRANSFOR4; AND
C TRE SUBRUINE sample AIUDWS RE USER TO GE ERATE MIE
C THE INPUT DAM BY WRITING THE APPROPRIATE EQUATIOS. IF
C THE USER ELECTS TO GENERATE MIE INPUT DATA BY USING THE
C SUBOTINE sample, THE EQUATIONS IJST BE WRITTEN INTO
C HIE SUERUTINE USING STANDARD F0RTRAN 77 STATEMENTS AND
C THE INPUT DAA GEERATED MUST BE STORED IN ThE
C ARRAY xtmp (). THE UTPU' OF 'FFT.FOR' IS STORED IN
C THE ARRAY x (). THE USER HAS 'ME OPTION OF SELECTING
C ONE OF TWO OPERATING MODES: BATCH OR TEST.
C IN BATCH MDE THE AMOUNT OF INTERACTION WITH THE
C USER IS MINIMIZED AND IT IS ASSUMED THAT THE INPUT
C PARAMETERS HAVE EM STORED IN THE INPUT FILE 'FFT.IN'.
C IN TEST ME THE USER IS 4PRTED FOR.' TE NAME OF
C IHE INPUT FILE OR HAS THE OPTION TO PEPRM A TRIAL
C RN USING THE DATA STORED IN HE FILE 'FFr. TST'.
C IT IS REC4ENDED THAT FIRST-TIM USERS SELECT TEST
C NDE AND MAKE A TRIAL IMN WITH THE PRESIORED
C DATA. THE TEST MODE ECHOES PORTIONS OF THE INPUT
C DATA ONTO THE MONITOR TO ALLOW VERIFICATION OF ITS
C ACCURACY. THE OUTPUT IS STORED IN TABULAR FORM IN
C THE FILE 'FFT.OUT ' AND IN A FORM SUITABLE FOR PWI2TING
C IN THE FILE 'FFT.DAT'.
C
C
****************************** IN ********************************

C
C
C IIS PRAM ASSUMES ThAT THERE ARE N = 2**m COMtP VALUES IN 'ITE
C INPUT SEQUENCE. THE INRW) SE!ENCE IS ASSUMED TO BE DEFINED IN
C THE INTERVAL: 0 TO N-I. IF THE INPUT SEQUENCE CONSISTS OF 'REAL'
C NUMBERS THE IMAGINARY PAR IS STORED AS 0.0. THE VALUE 'Im' AS WELL
C AS TE OME PARAMETERS DESCRIBED BELOW SHOULD BE STORED IN THE
C INPUT FILE 'FFT. IN'. ALL OF THE READ SATE1VTS USED BY THIS
C PROGRAM REQUIRE FOMTED INPUT. PARTICULAR ATTENTION SHOULD BE
C PAID TO THESE FRMATS, ESPECIALLY UE USE OF THE DECIMAL POINT TO
C DISTINGUISH BEIWEEN 'REAL' AND fNTGER DATA.
C
C

213

C NAME TYPE RANGE (ARRAYS) ERICTIONS
C --

C m INTEER 0 <= m <= 8
C dsorce CHARACTER 'F' OR 'S'
C optior CHARACTER 'FFT' OR 'INV'
C xtip() CIOPLEX O,1 , ... , N-I 1 <= N <= 256
C
C WHERE:
C
C m = AN INTEGER THAT SPECIFIES THE NUMBER OF C14PUEX VALUES IN THE
C INPI SEXUECE. N = 2**m.
C
C dsorce = A CHARACTER VALUE OF 'F' OR 'S' DTING WHEIRER MHE
C IN7T DATA IS TO BE READ FRM A FILE (F) ORTO BE
C GENERATED (S) BY A USER-DEFINED E TION LOCATED IN THE
C SUBOTINE sample.
C
C option = A CHARACTER STRUT OF THE IEITERS 'FFT' OR 'INV'
C DENOTING WHEHER THE FET OR THE INVERSE FET IS TO BE
C PERFORMED ON THE INPUT DATA.
C
C xtrlp() = THE ARRAY OF CMPLX INPUT DATA. IF dsorce = 'F' IS
C SELECTED THEN THE USER MST SUPPLY THE N INPUT VALUES
C IN ME FILE. IF dsorce = 'S' IM THE USER HAS
C ELECTED TO GEATE THE INPUT SEQUENCE BY PVIDING 'THE
C APRPRIATE FORTRAN STATEMENIS IN THE SPACE PVaDED IN
C SUBROLME sample. IF THIS METHOD OF DATA GENERATION IS
C ELECTED 'HE PROGRAM MUST BE RECXMPILED BEFORE EXECUTION.
C
C NOtE: THE INPUT' FORMT S7TI ETI OCCUR IN THE MAIN PFOAM
C FOLLOWING 'tE CAPTION: ******** INPUT'O ********.
C THE FOM OF THE INPUT DAM FILE IS:
C
C LINE# ENTRIES FORAT
C
C 1 m,dsorce,cption il,tll,al,t21,a3
C 2...N+I xtmp() 2f10.0
C
C
C WHERE: N = 2**m
C
C NOTES 1. LINES 2...N+1 ARE ONLY RDUJIRED IF dsorce = 'F'. IF
C dsorce = 'S' THEN THE USER HAS ELECTED TO GENERATE THE
C N = 2**m VALUES FOR xtmp() IN THE SUBOTINE sample. THE
C USER MUST PROVI1E HE APPROPRIATE FORRAN STATEMENTS IN
C U sample TO GENERATE THE VALUES FOR xtmp().
C
C 2. THE FOAT f10.0 USED FOR INPUT DATA PERMITS THE DECIMAL
C POINT TO BE PLACED ANYWHERE IN THE FIELD OF TEN COLUMNS
C AND AISO ALLOS THE EXNENTIAL FORMAT TO BE USED (E.G.,
C 3146.2 = 3.1462E+03).
C

214

C

c
c
C THE INU DATA AS WELL AS THE (XTPUT DATA ARE STORMD IN TAJ[EAR
C Faft IN THE F=I'FFT.OUT'. ADDITIONALLY, THE INPUTE SEWEN]CE (REAL
C AND QZlR) AND rMOTU SWNCE (MAGNIUD AND Hi-ASE) ARE
C WRITTIN INTO MRE FILE I'FET. AT'I TO FACIITT PIarITlNG BY A
C SEPARATE, USER SUPPLIED PROGRAM. TME FORWA OF THE DATA IN
C 'FFT.DAI IS: eL?2.6, 2x, eL?..6. TIM FIRST EITRY (XWWPONSS TO
C THE ORDINATE VAI!JE AND M4E SE=M EMU, THE ABSCISSA VAIUE.
C ADDITIONAL HEADE INMQCN IS WRTE INTO 'FTT.DAT' TO ALLOW
C FOR CCNIROL AND LAEI OF EACH PIDT.
C
C

************************ EXAMPLE ***************

c
c
C THE INPI PAAMERS ErL ARE STORED IN THE ANT FIE 'FF.TST'.
C MMIHR ARE EIGHT DTA PO TS IN T E INPUT SNE GOAL IS
C TO EP TE THE FAST F IE TRANS H (FFT) OF THE DAENCE.

C NOTE: N 2**m 8 2x, m 3.
C FET

SC 0.0 0.0
C 1.0 0.0

SC 2.0 0.0
C 3.0 0.0
C 4.0 0.0
c0.0 0.0
C 0.0 0.0
C 0.0 0.0
C

SC UME RESULTING OUPU DATA FILE 'FTT.CUT' IS:

C

C INP DATA SCLARE IIIE: FFT.TST
C VALUE OF m = 3 VALUE OF N (2**m) = 8
C dsorce = F option = F

C
CC INPUT DATA 0.0 DTA

c (BIT-REVERSED ORDER)
cC SAMPLE # REAL IMAGINARY REAL IMAGINARY
C 0 0.000000E+0 OOOOOOE+00 OOOOE+00 .000000E+0

C 1 .100000E+01 .000000E+00 .400000E+01 .000000E+00C 2 .200000E+01 000000E+00 .200000E+01 .000000E+0

C 3 .300000E+01 .000000E+00 OOOOOOE+00 OOOOOOE+00
C 4 .400000E+01 .000000E+00 .100000E+01 OOOOOOE+00

j 215

C INPUT DTI12I1FS

C 5 .000000E+00 .000000E+00 .000000E+00 .000000E+00
C 6 .OOOOOOE+00 .000000E+00 .300000E+01 .000000E+00
C 7 .000000E+00 .000000E+00 .000000E+00 .000000E+00
C
C!
C OUTPUT DATA
C
C SAMPLE * REAL IMAGINARY MAGNITUDE PHASE
C (DEGREES)
C 0 .100000E+02 .000000E+00 .100000E+02 .OOOOOOE+00
C 1 -.541421E+01 -.482843E+01 .725448E+01 -.138273E+03
C 2 .200000E+01 .200000E+01 .282843E+01 .450000E+02
C 3 -.258579E+01 -.828427E+00 .271525E+01 -.162236E+03
C 4 .200000E+01 .000000E+00 .200000E+01 .000000E+00
C 5 -. 258579E+01 . 828427E+00 .271525E+01 .16223 6E+03
C 6 .200000E+01 -.200000E+01 .282843E+01 -.450000E+02
C 7 -. 541421E+01 .482843E+01 .725448E+01 . 138273E+03
C
C
C FOR IIWST~RAIVE PUJRPOSES T1HE INPUT SEUECE Xtrnpo 0 aUD HAVE
C BEEN GENERAT~ED BY SPECIFYING dsorce = '5' AND WRII TIHE
C App~oIR~kE FORM!AN STATEENT INTO SUBROUINE sample. TLHE
C STATEM4ENTS TH~AT COULD BE USED TO0 ACCOt4PLISH ITHIS ARE WRITTEN
C INTlO THE SUBRCTINE BUT ARE 'I94EhIME Wr)'.
C
C

C*****************MAIN* PROGRAM

character infie* 12, option*3, mode*1, dsorce*1
caxnplex x(0:255), xtmp(O:255)
real ,anag(O:255), xpti(O:255), nn

C PRZPT USER FOR IVDE: BATCH OR TEST.

write(*, 1115)
read(*,1117) mode
if((mde.eq. 'y') .or. (mode.eq. 'Y')) then

mode = Y
write(*, 1118)
read(*,1119) infile
else
infile= 'FFT. IN'
erKdif

C UNIT--l D=4iED AS INPUYT FILE. UNITS--2, 3 DEFnED AS OtITPUT FIES.

open (urat=1, file=infle, status= I'old' iostat=ierr, err--999)
o~pen (unit--2, file= IF'F. LT I)
open(unit=-3, file=IFFT.DAI)

216

C REMD INPUT! PARAMETERS AND C0NEJCr ERRR CHECS.

read(l,1000) m, dsorce, option

if ((m. lt.O0) .or. (m. gt. 8)) then
write(*, 1010) m
stop 'The allow~ed values for mi are: 0 <-- m <-- 8.'
erm.if

if((option.eq. 'FFr') .or. (option.eq. 'fft')) then
option = I'FFr'I
elseif((option. eq. I'INV') .or. (option. eq. I mrv')) then

option = INV#
else

write(*, 1011) option
stop 'The allwe values for option are: ''F1' or 'inV' '*

erdif

if((dsorce.eq. 'F') .or. (dsorce.eq. 'f')) then
dsorce = IF'
elseif((dsorce.eq. 'S') .or. (dsorce.eq. 's')) then
dsorce =IS
else

write(*, 1018) dsorce
stop ' The alloed values for dsorce are: I IS"I or ''IF' I '

C DEFNE CONSTANTS.

N = 2**m
en =N

pi =4.0*atan(1.0)

nuniplts = 4

C FOR dsorce = 'F' READ THEINPUTRJ' SEQUENCE FROM THE INPUT! FILE.
C FOR dsorce = 'S' CALL sampl1e TO0 GENERATE TH~E INPEff SEQUENCE.
C TIHE INP~UT SEQUENCE IS STORED IN THME ARRAY xtlnp(0.

if(dsorce.eq. 'F') then
read(1,1001) (xtznp(i)j,=O,N-1)
else

call samiple (xtip, N)
erdif

C FOR TEST MODE ECHO INPUIT DATA ONTIO TIM MOPNrMIR (UNT

if(mode.eq. 'Y') then
write(*, 1016) infile

write(*, 1017) m, N, dsorce, option
write(*, 1012) k

217

write (*, 1013)
do 3 i=O, k-i

write(*,1020) i, Xtnip(i)
3 continue

erdif

C WRITE THE INPUT~ SEJDQUE 11M FILE: FFT. DAT.

write(3 ,2000) rnmplts
write(3,2001) N
write (3, *) I PUT S!EJF2NCE (REAL)'
write(3,*) 'SAME #1
write(3,*) 'REAL xtnp()I
do 55 i=0, N-i

55 continue

write(3,200i) N
write (3, *) IIN4PU SEJENCE (IMAGINARY)'
write(3,*) 'SAMPLE #'
write-(3,*) 'fl4AG xtnp()I
do 56 i=O, N-i
mf = i

write(3,2010) mn, aimag(xttp(i))
56 continue

C CALL reversal TO REARRANG DATA I'I BIT-REVJERSED ORDER.

call reversal (N, m, xtmp,x)

C WRITE INPUT DMM ITO FIE FTr. OUT.

write(2, 1016) infile
write(2,i0i7) m, N, dsorce, option
write(2, 1014)
write (2, 1015)
do 8 1=0, N-i

8 continue

C CALL f ft OR invf ft TO0 PERF01W THE SELECT'ED COMPU7TATION.

if(option.eq. 'INV') then
call invfft.(N, m,x)
else

call fEt (N, m,x)
endif

218

C TRAMFOR OUTPT DAMA INTO EXPNENTIIAL FORM: Yamag*EXP (j *xph).
C PHASE xp*i () IS EESSED IN DEXREES.

do 60 i=0, N-i
xmag M) = Cabs(X M)
if (abs (real (x (i))) .lt. 1. Oe-15) then

if(abs-(aiiuag(x(i))) .le.l.Oe-15) xph(i)=0.O
if (afiag(x(i)) .gt.1.Oe-15) xptl(i)--90.O
if (aimag(x(i)) .it.-1.Oe-15) xph(i)=-90.O

else

endif
60 continue

C WRITE MflE OUTPUT DATA INTO FILE: FTr. DAT.

write(3,2001) N
write (3, *) I OUTM~r MAGNIIUE'
write(3,*) '5AMPL.E #1

dob 57 i=0, N-i
nn=1
write(3,2010) nm, xmag(i)

57 continue

write(3,2001) N
write(3,*) 'IUTPJ1' PHASE1
write(3,*) '5AMPTE #1
write(3,*) 'PHASE (DEG)'I
do 58 i=0, N-i

nin = 1

58 continue

C WRITE THE OUTPUT DAMA INTO FIE: FF'r.Owr.

write (2, 1025)
do 5 i=0, N-i

write(2,1030) i, x(i), xmag(i), xph(i)
5 continue

write(*, 1019)
999 close (unit=1)

close (unit=2)
close (unit--3)

if(ierr.gt.0) then
write(*, 1116) infile, ierr
erdi~f

219

C INPUT*** fl ********

1000 format (i1, tll,al, t21,a3)

1001 format(2f10.O)

C ****************

1010 format(lx,'m = ',il,2x, 'Error, value of m, not allowed.')
1011 format (lx, 'option = ',a3 ,2x, 'Error, illegal value for option.'1)
1012 Oformat (/,' IE F7Fr I, il,'I VAILUES OF x~tip () ARE LISTED ',

1 'BEIC*J. ,/,' VERIFY THAT THE DATA WAS STORED CORREarL.1)
1013 format(/,t4, 'SAMPLE #',t15, 'REAL' ,t29, 'IMAGINARY' ,/)
1014 Oformat (///, t25,'INPVTH DATA'I, t57,'IINPUT' DATA',I

1t52, ' (BIT--REVRED ORDER) ',/)
1015 Oformat(t4,'$SAMPLE #',t17,'IREAL',t33,'1IMAGInARY,t49, 'RFAL',

1016 format (///,'I INPUT DATA SOURCEFILE: 1,a12)
1017 Oformat(' VALUEOF m= ',il,5x,'VAIE OF N (2**m) = ',i3,/,lx,

1'dsorce = ',al,5x,'option.= ',a3)
1018 format (lx, 'dsorce = ',al, 2x, 'Error, illegal value for dsorce.')
1019 Oformat (//,'I TABULAR. OUTPUT DATA IS SIORED IN FILE: FFT.0WT.'

1/,'1 PI0IM2NG DATA IS STORED IN FILE: FFT.DAT.'1)
1020 format (t7, il,t13,2 (e12.6,2x))
1025 Oformat(///,t33,'WflUI'U~ DATA',//,t4, 'SAMPLE #',t17,'IREAL',

1030 formt(t5,i3,t15,4(e12.6,4x))
1115 Oformat (lx, ' Do YOU WISH M1 gJN THIS PROGAM IN TEST'

1116 Oformat (///, lx, -ERROR OPENING INPUT' FILE: ',a12 ,/, lx, 'PRGRAM',
1' TI4ATED.',//, 1x,ERRR CODE:1, i4,/////)

1117 formnat (al)
1118 Oformat (/////, 1x, 'TYPE THE NAME OF YOUR DATA F11. F0IMED'I,

1' BY <R. ',/,' IF YOU DESIRE TO MAKE A TEST RUN USING THI',
2' SAMPLE DATA ALREADY STORED' ,/, I IN THIE FILE: FTT.TST',

1119 format (a12)
2000 format(il)
2001 format(i3)
2010 format(e12.6,2x,e12.6)

end1

C SUER)TlINE: invf ft

C PURPOSE: THIS SU7TINE ACCEPTS AS INP1UT 'DIE C14PLEX ARRAY
C x(), CUI'ES THE INVERSE FAST' FOURIER. TRANSFORMd (IFFT)
C OF 'DIE ARRAY, AND MEUMNS 'DIE RESULTNG SEQUENCE IN 'DE
C ORIGINAL ARRAY x0.

220

subroutine irivfft (N, m, x)

carplex x(0:N-1)

en=N

C CALCULATE THE CPIX ONJUGATE OF THE MIN S E CE.

do 70 i=0, N-i
x(i) = conjg(x(i))

70 continue

C CAICULATE THE FAST FOURIER TRANSFORM OF THE ARRAY.

call fft(N,m,x)

C CAIJLATE UE CMPLEX ONUGATE OF THE RESULTING ARRAY.

do 80 i=O, N-1
x(i) = conjg(x(i))/en

80 continue

returnend

C SUBJUINE: reversal

C PURPOSE: THIS SUB7JTIE ACCEPTS AS INPUT THE CONKM ARRAY
C CU nTnflC THE VAIDES xtmp () MWT WERE READ FRO
C MIE INFEIU FILE. THE wrPr OF MIS SU ETI N IS
C THE COMPLEX ARRAY x() THAT OT1AIM THE INPUT
C VALUES IN 'BIT-REVERSED' ORDER.

subroutine reversal (N,m, xtnp, x)
complex xtmp(0:N-i), x(0:N-I)

do 10 k=O, N-i
newaddr = 0
maddr = k
do 20 i=O, m-i

lniwr = mod(maddr,2)
newaddr = newaddr + irnxr*2**(m-l-i)
maddr = maddr/2

20 continue
x(newaddr) = xtmp(k)

10 continue

return
end

221

C SURJTINE: f ft

C PUROE: THIS SUBROUTINE ACCPIS AS INPUT T1E C1PL4M ARRAY x0,
C CM4UTES THE FAST FaMRER 1RANSFaO1M (FET) OF MIE
C ARRAY, AND RE7UIRNS THE RESULTING SEJENCE IN~ ME
C ORIGINAL ARRAY x0.

subroutine fft (N, m, x)
ccuplex x (0: N-1) , W, tnp

pi = 4.0*atan(l.0)
en =N

do 50 L--1, m.
ispace = 2**L
s = N/ispace
iwidth = ispace/2
do 40 j=0, iwidth-1

r = s*j
alpha = 2.0*pi*r/en
W = cmplx (cos (alpha), -sin (alpha))
do 30 itopurj, N-2, ispace

lbot = itap + iwidth
tip = x(ibot)*W
x(ibot) = x(itcp) - tip
x (itop) = x (itop) + tip

30 continue
40 cont inue
50 continue

return

C SUHB)I'INE: samiple

C PRPOF~SE: TIM SUERCUIINE ALTffqS THE USER TO0 GENERATE 2**m
C SAMPLES OF A CON1MKWCXS FUNCrION. THE SAMPLES ARE
C REIURED TO0 THE MAIN PRGAM IN MHE ARRAY xtiip

subrouitine sample (xtip, N)
carplex xtiip(0:N-1)

pi = 4.0*atan(l.0)
en = N

222

C DEVEIDIP flIE SAMPLNG AIMlRIM IN TIS SPACE. IM SATEMN'S
C TYPED IN M'JST FOLICJ ST~ANDARD FaUrRA 77 MMJES AND MAY USE
C FOR1!MA 77 INTR1INSIC FUNCTICMS SUCHi AS: SIN(), COSO, ABS() ...
C AN EDUMPLE IS SHOW BELOW. TIHE INPUT DAMA MUST BE STIYRED IN
C MIE ARRAY xbtip . FTr. POR MUST BE CttPIIE AA BERE
C EDM iCN IF TH~IS SLUM=II IS USED.
C
C *** EXAMPTE
C
C do 2 i=O, N-i
C if (i. le. 4) then
C xtmp(i) = anplx(i,O.O)
C else
C xtzrp(i) = cmplx(O.OO.O)
C erdif
C 2 continue

return

223

C ONCORET. FOR VERSION: 2/03/88
C
C
C PUROSE: TIHIS PRO)GRAM PEREORS ANY ONE OF THE]FOILOWING FOUJR
C COPTIONS GIVEN TWO, (X!4PLEX ARRAYS OF INPUT DATA:
C INEAR CvOtM cuO (LOWT); LINEAR COREATION (LCQR);
C CIRCULAR CONVOUITION (COON) ; OR CIUAR (X)RRLATION
C (CCR) BY USING M11E FAST FaJRIER, TRANSFORM (FFT)
C AT 301RTIHK. FOR T1HE CONVOLUTION OPERATIONS T1HE PRCEDURE
C INVOLVES RT4TING THE FTS OF MEE ARRAS, K(JLTIING
C THE FFrS T1OGETHIER. AND (XI4FuTnG THE INVERSE FFT
C OF THE~ RESULT1. FOR THE CORRELATIION OPERATIONS TE
C PRCEDUJRE IS TIHE SAME EXCEPT THAT THE CONJUGATE OF
C THE FFT OF THE FIRST INPUT ARRAY IS M!JITIPLIED BY TH~E
C FFT OF THE SECOND ARRAY. THE PROGM CONISIS OF A MAI
C PRAM AND SIX SURUIE. THE SUBROTINE zeropad
C ENDE~S TH~E INPUT ARRAY PASSED TO0 IT BY ADDING AN
C APPRRIATE NUMBER OF ZERO)ES TO THE~ ORIGINAL INPU'T DATM
C TO CEATE AN ARRAY OF LENGTH{ 2**m, m = INTEGER. TE
C SUJIEf ft CCMPUTES THE DISCRETE FOURIER. TRANSFO1R4
C OF AN ARRA USING THE RADI FFT ALGORIII M E 1
C SUROTINE invfft COMPUTES THE INVERSE DISCRETE
C FURIER TRANSFORM OF AN ARRAY USING THE AlTERNATE
C INVERSION F101UA. THE SUROUINE reversal REARRANGES
C THE INPUT, DATA, IM BIT-REVED ORDER BEFORE f ft IS
C CALLED. TEE -BUOTINES sarpl AND saupl2 ALO T1HE
C USER TO0 GENERATE EI 1HE OF TEE INPIUT ARRAYS BY WRITING
C TEE APPRPRIATE EWJATONS. IF THE USER Q{OOSES TO0
C GE4EATE umE INPUT DATA BY USING ETEE OF THE sampl
C SUJ E(S) , THE EWJATINS lUST BE WRITTEN INT1O
C MEE SUBRITINE (S) USING ST'ANDARD FORTRAN 77 EXECUTABLE
C 24AMMiI AND THE VAlUE GEN~ERATED MUIST BE STIORED
C IN TEE ARRAYS xi1 () AND xn2. () E E USER HAS ME
C OPTION OF SELECTING ONE OF TMw OPERATING ?4)DES: BATCH
C OR TEST. IN BATCH2 ?DE T1HE MOUJNT OF INTERACTION
C WITIH THE USER IS MINIMIZED AND IT IS ASSUMED TEAT THE
C INPUT PARAMETERS HAVE BEENI ST1ORED IN TH~E INPUT FILE
C '(0NRT. IN'. IN TEST MODE TIHE USER IS PROM4PTED
C FOR THE NAM OF THE~ INPUT FILE AND HAS T1HE OPTION
C M1 PERFORK A TRIAL R!UN USING THE DATA STORED IN TE
C FILE ' CDRFT. 1ST'. IT IS RECMMENDED TEAT' FIRST-TIME
C USERS SELECT TE MOIDE AND PERFORM[A TRIAL RUJN
C WITIH THE PRES'IORED DATA. THE TEST MO)DE ECHOES
C PORTIONS OF THE INPUT DATA ONTO TEE MONITOR. 10 ALLO
C VERIFICATION OF 1-3 ACCURACY. T1HE WTVPUIT OF TE
C R(AM 'CONCORf. -FOR'I IS STORED IN TEE ARRAY xn3 (
C AND IS MRIT1TEN' IN TABULAR FORM INTO TEE FILE
C 'CONCORFT. WT' AND IN A FORM SUITABLE FOR PLOTTING
C IN THE FILE 'CONCORFT. DAT'.
C
C

224

C***~******A,************ INPUT

C
C

C THIS PROGRAM ASSUMES THAT THERE ARE TM SEQUENCES OF INPUT DAIA
C STORED IN 'ME ARRAYS xnl() AND xm2() OF LENGTH{ 'Ni' AND 'N2',
C REZSTTIVELY. THE SEQUENCES ARE ASSUMED MO BE COMPlE. IF THE
C SEQUENCES ONTAIN REAL VALUES ONLY, THEN MHE IMAGINARY PART IS
C STORED AS 0.0 . THIS PROGRAM USES A RADIX-2 FFT ALGORITHM.
C FOR LINEAR CONVOUTION OR LINEAR CORRELATION (option = LON, TCOR)
C THE INPUT ARRAYS DO NOT HAVE TO BE OF LENGIH 2**m, m = INTEGER.
C THE SUEVOUTINE zeropad ADJUSTS THE ARRAY LENGIHS BEFORE
C THE FFT CMPIUTATIONS ARE MADE. FOR CIRCUIAR COLUTION OR
C CIRCUIAR CORREATION (option = COON, COR) THE ARRAYS MUST BE OF
C LENGIH 2**m, m = INTEGER BECAUSE EXTENDING THE SEQUENCES BY
C ZERO PADDING WILL PRODUCE ERRONEUS RESULTS. THE I4Rf SEQUENCES
C ARE ASSUMED TO BE DEFINED IN M1E INTERVALS 0 MO Ni-I, AND 0
C TM N2-1, RESPECTIVELY. THIS PROGRAM ALLOWS THE USER THE
C OPTION OF EITHER READING THE INPUT ARRAYS FROM THE DATA
C FILE OR GUERATING THE INPUT VALUES FROM AN ITERATIVE EWUATION
C IN THE sanpl SUEWTINE (S). THE PARAMETERS DESCRIBED
C BELOW ALLOW THE USER TO SELECT THE DESIRED OPTIONS AND THESE
C PARAMETERS SHCUD BE STORED IN THE INPUT FILE 'CONOORFT.IN'.
C ALL OF THE READ S T S USED BY THIS PRG RAM IRE FOME
C INPUT. PARTICJlAR ATIENTION SHOMULD BE PAID TO THESE F01MES,
C ESPECIALLY THE USE OF THE DECIMAL POINT TO DISTINUJSH BETWEEN
C 'REAL' AND INTEGER DATA.
C
C
C NAME TYPE RANGE (ARRAYS) RESTRICTIONS
C - -_ _ _ _ _

C N1 INTEGER 1 <= Ni <= 128
C dsrcel CHARACTER 'F' OR ''
C N2 INTEER 1 <= N2 <= 128
C dsrce2 CHARACTER 'F' OR '5'
C option CHARACTER ONE OF THE FOLLOWING:
C 'N' 'ItOR' 'CCN' 'OCORI
C
C xnl() OMPLEX 0, 1, ... , Ni-I 1 <= N1 <= 128
C xn2() OMPLEX 0, 1, ... , N2-1 1 <= N2 <= 128
C
C WHERE:
C
C NI = AN INTEGER THAT SPECIFIES THE NUMBER OF COMPLEX VALUES
C TM BE STORED IN THE ARRAY xnl(). FOR option = CCON
C OR CCOR, Ni MUST BE AN INTEGER POWER OF 2, AND Ni AND N2
C MUST BE EQUAL.
c
C dsrcel = A CHARACTER VALUE OF 'F' OR 'S' DEOTING WHETHER THE
C IN ARRAY xnl () IS M1 BE READ FROM A FILE (F) OR I1C
C BE GENERATED (S) BY A USER-DEFINED EQUATION LCATED IN
c THE SURUNINE sampll.

225

C
C N2 = AN INTEGER THAT SPECIFIES THE NUMBER OF CPLD VALUES
C TO BE STORED IN ME ARRAY Xn2 (). FOR option = COON
C OR COOR, N2 MUST BE AN INTEGER POWER OF 2, AND NI AND N2
C MUST BE EQUAL.
C
C dsrce2 = A CHARACTER VALUE OF 'F' OR 'S' ENOTING WHE7 THE
C INUT' ARRAY xm2() IS TO BE READ FIt A FILE (F) OR TO
C BE GENERATED (S) BY A USER-DEFINED EWJATION LOCATED IN
C THE SaU)UTINE sanpl2.
C
C option = A CHARACTER STRING OF FOUR tErTERS ENTING THE
C COMPUTATION DESIRED: 'ILON' = LINEAR CENVOLUTION
C 'ITOR' = LINEAR C(RRElATION
C 'CON' = CIRCUIAR CO t LUTICN
C 'OOR' = CIROJIAR CORRELATION.
C
C xnl() = THE FIRST ARRAY OF (CMPLEX INFUT DATA. IF dsrcel = 'F'
C IS SPECIFIED THE USER MJST SUPPLY THE Ni INPUT VALUES
C IN THE FILE. IF dsrcel = 'S' THE USER HAS ELECTED TO
C GENERATE M1E INPUT DATA BY PROVIDING UE APPROPIATE
C FORTRAN SATEMNTS IN THE SPACE ALLOCATED IN SUBROUTINE
C sampll. IF THIS MEM OF DATA GENERATION IS ELECTED
C UE PROGRAM MST BE REOIMPILED BEFORE EXECUTION.
C
C xn2(=THE SECOND ARRAY OF CO4PLEX INRT DATA. IF dsrce2 =
C 'S' IS SPECIFIED THE USER HAS ELECTED TO PROVIDE TIE
C APPROPRIATE FORTRAN S T1EIS IN THE SPACE AJLJOCATED
C IN SUOTINE sampl2. IF THIS METHOD OF DATA
C GENERATION IS ELECTED THE PROGRAM MUST BE REX2PIIED
C BFORE EXECUTION. IF dsrce2 = 'F' TRWg ThE USER MUST
C SUPPLY THE N2 INPUT VALUES IN THE FILE.
C
C NOTE: TIE INPUT FORMATATEMENTS OCCUR IN THE MAIN PROGRAM
C FOLLqING THE CAPTION: ******** INFUT FOIW4T *
C THE FORK OF THE INPUT DATA FILE IS:
C
C LINE# ENTRIES FORMAT
C
C 1 NI,dsrcel i3, tll, al
C 2 N2,dsrce2,option i3,tll,al,t21,a4
C NOTE 1 xnl() 2f10.0
C NOTE 2 xn2() 2f10.0
C
C NOTES 1. IF dsrcel = 'F' THEN THE LINES 3...N1+2 MUST CONTAIN
C THE VALUES TO BE READ INTO THE ARRAY xnl(). EACH VALUE
C IS READ AS A CMPIP X NUMBER, I.E., REAL IMAGINARY.
C IF dsrcel = 'S' ITHEN THE USER HAS ELECTED To GENERATE
C THE VALUES FOR xnl() IN THE SUBOTINE sampll. THE
C USER MUST PROVIDE THE APPROPRIATE FORTRAN SATEMERM
C IN SUBROUTINE sanpll TO GENERATE xnl().
C

226

C 2. IF dsrce2 'F' IHEN THE NEXT N2 LNES CONTAIN THE
C VALUS TO BE READ DU1 THE ARRAY xn2 (). EACH VALUE
C IS READ AS A COMPIX NUMBER, I.E., REAL IMAGINARY.
C IF dsrce2 = IS' HNR HE USER HAS ELECTED TO GENERATE
C MIE VALUES FOR xn2 () IN THE SUBOTINE sampl2. THE
C USER MUST PROVIDE HE APPROPRIATE FORTRAN STATEMENS
C IN MROUTINE samp12 TO GENERATE THE ARRAY xn2 0.
C
C 3. THE F01AT 2f10.0 USED FOR INPUT DATA PEMIITS TE
C DECIMAL POINT TO BE PLACED ANYWHERE IN THE FIELD OF TEN
C COLUMNS AND ALSO ALLOWS T[E EPNENfAL FOW TO BE
C USED (E.G., 3146.2 = 3.1462E+03).
C
C 4. IF option 'CCON' OR 'C OOR' Ni MUST HE EQUAL TO N2.
C
C
**************************** Jf~1 *****************

C
C
C THE INPUT DATA AS WELL AS THE WUff DATA ARE STORED IN TABULAR
C FOW IN THE FILE 'CONCORFT. air'. ADDITIONALLY, THE INOT
C SEQUENCES AND THE OUTPT SEQUENCE ARE RITTEN ID THE FILE
C 'CONCORFT. DAT' TO FACILITATE PLOITING BY A SEPARATE, USER
C SUPPLIED PGRAM. THE FOaT OF THE DATA IN 'aCNCORFT.DAT' IS:
C e12.6, 2x, e12.6. THE FIRST ENTRY C0RRESPONDS TO THE ORDINATE
C VALUE AND THE SECOND 01mRY, THE ABSCISSA VALUE. ADDITIONAL HEADER
C INFOMI: ON IS WITTEN INTO 'CONCORFT.DAT' TO ALLOW FOR CONIM)L
C AND IABELING OF EACH PLOT.
C
C
**************************** ~pj ********************************

C
C
C ME INPUT PARAMETERS BELOW ARE STORED IN HE INPUT FILE
C 'CONCORFT. ST'. THE PROGRAM READS THE FIRST 4 VALUES I=T1 xnl()
C (dsrcel = 'F', Ni = 4), AND REAMS THE NEXT 5 VALUES INTO xn2()
C (dsrce2 = 'F', N2 = 5). THE GOAL IS TO CALaUATE THE LINEAR
C CONVOLUTION OF HE TWO INPUT ARRAYS.
C
C
C 004 F
C 005 F LOON
C 1.0 0.0
C 1.0 0.0
C 1.0 0.0
C 1.0 0.0
C 2.0 0.0

227

WON&

C 2.0 0.0
C 2.0 0.0
C 2.0 0.0
C 2.0 0.0
C
C
C THE~ RESULTING OrUTPU DAMA FIUZ I CON()RFT. OUTr IS:
C
C INPUT DAMA SCOJRCEFITLE: CYNCRT. TST
C Nl = 4 dsrcel =F N2= 5 dsrce2 F
C option = ICON
C
C
c INPU DA3A,
C
C xnl()
C n RE.AL IMAINARY
C 0 .100000E+01 .000000E+00
C 1 .100000E+01 .000000E+00
C 2 .100000E+01 .000000E+00
C 3 .100000E+01 .000000E+00
C
C xn2()
C n REAL IMA~GINARY
C 0 .200000E+01 .000000E+0
C 1 .200000E+01 .000000E+00
C 2 .200000E+01 .000000E+00
C 3 .200000E+0-1 .000000E+00
C 4 .200000E+01 .000000E+00
C
C
C OUTPUT DATA
C
C xn3()
C n REAL IM4AGINARY
C 0 .200000E+01 .894070E-07
C 1 .400000E+01 -. 42146SE-07
C 2 .600000E+01 -. 754979E-07
C 3 .800000E+01 -. 168587E-06
C 4 .800000E+01 -. 894070E-07
C 5 .600000E+01 .421468E-07
C 6 .400000E+01 .754979E-07
C 7 .200000E+01 .168587E-06
C
C
C NOTE: FOR ILUSTRATIVE PUJRPOSES THE INPUT SEQUENCES COULD HAVE
C BEEN GENERATED BY SPECIFYING dsrce# = 'S' AND WRflfING THE
C APFPRPRMM FORTRAN STTEMM21' INTIO THE sampl# SUM OUTNES.
C THE SI!ATEDENIS TIHAT axjin BE USED TO0 ACOOMPLISH THIS ARE
C WRITTEN INTO0 THE RESPECTIVE SUBF40TINES BUT ARE 'COHMM2rE
c curl.
C

228

C
C******************** P ~RMM **********~~~

chaaracter infile*12, optjon*4, mod*l, dsrcel*1, dsrce2*l
character title*20
ccTplemxnml(O:255), xn2(O:255), xn3(O:255)
cmnplex xtnpl(O:255), xtmp2(O:255), xtmp3(O:255)
real nn

C PR USER FOR MDE: BA=1(OR TEST.

write(*, 111.5)
read(*,1117) mode
if((nrode.eq. WY') .or. (mode.eq. 'Y')) then

nXXde = IWYI

read(*,1119) infile
else
infile = 'CONCOREr. IN'
erxiif

C tJN1 DEFNED AS INWM FILE. UNTIS-2, 3 DEFNED AS aI'Lff FIUS.

open (unit-1, ,file=inf ile, status--'ol iostat=ierr, err--999)
open (unit-m2, ,file=' CX)NCORT. Wr)
open (unit=-3 , file=' CONCRFT. DAT)

C READ INPRJT PARMEER AND CflNEXJC T R CaiECS.

read(1,1000) N1, dsrcel
read(1,1001) N2, dsrce2, option

if ((dsrcel.eq. If ') .or. (dsrcel.eq. 'F')) then
dsrcel = 'F
elseif((dsrcel.eq. 's') .or. (dsrcel.eq. IS')) then

dsrcel = 'S5'
else

write(*,1009) 'dsrcel = ,dsrcel

stop ' The allowed values for dsrcel are: I''F'I' or ''5''.
erxU f

if((dsrce2.eq.'f') .or. (dsrce2.eq. 'F')) then
dsrce2 = 'F'I
elseif((dsrce2.eq.'s').or.(dsrce2.eq.'S')) then

dsrce2 = 'S5'
else

write(*, 1009) 'dsrce2 = ,dsrce2

stop ' The allowed values for dsrce2 are: ''IF'' or ''I5''I I
exxiif

229

if((option.eq. 'ccon') .or. (option.eq. 'OON')) then
option = IOO0N
title = 'Circular convolution'
N3 = NI
iend = N3
elseif (o(ption.eq. 'ccor') .or. (option.eq. 'COR')) then
option = 'CCOR'
title = 'Circular Correlation'
N3 = NI
ierd = N3
elseif((option.eq. 'Icon') .or. (option.eq. 'I(ON')) then

option = 'LO '

title = 'Linear Convolution'
elseif((option.eq. 'icor') .or. (option.eq. 'ICOR')) then
option = 'LCOR'
title = 'Linear Correlation'
else
write(*, 1011) option
stop 'The allowed values for option are: CC0N, C0OR, LON, LJOR.'
endif

if((Nl.lt.1) .or. (Nl.gt.128)) then
write(*,1010) 'N1 = ', N1
stop 'The allowed values for N1 are: 1 <= N1 <= 128.'
elseif((N2.1t.l).or. (N2.gt.512)) then
write(*,1010) 'N2 = ', N2
stop 'The allowed values for N2 are: 1 <ff N2 <= 128.'
elseif((option.eq. 'C(ON') .or. (option.eq. 'C0R')) then
if (NI.ne.N2) then
write(*,1008) option, NI, N2
stop 'For option = ''OCOR'' or "COON" N1 must equal N2.1

endif
do 14 m=0, 10
if (2**m-N3) 14,13,15

15 write(*,1007) option, Ni, N2
stop 'Error, N1 and N2 are not integer powers of 2.'

14 conitinue
13 erxif

C DEFINE C.NSTANTS.

k=8

nmplts = 6

C FOR dsrce# = 'F' READ I SEQUENCE (S) FROM THE DATA FILE.
C FOR dsrce# = 'S' CALL sariple# TO GENERATE THE INPUr SEQUENCE(S).
C ME INPW SEWENCES ARE SIORED IN ME ARRAYS m1 xn2

230

if (dsrcel. eq. 'FV) then
read(1,i1002) (xnl (i) , i=0, Nl-l)
else

call sanpll(xanl,Nl)
erxlif

if(dsrce2.eq. 'F') then

else
call sampl2(xn2,N2)
endif

C FOR TEST MODE EMO inMr DATM ONTIO MN'R(UI

if(mcde.eq. 'Y') then
write(*, 1016) infile

write(*,1017) N1, dsrcel, N2, dsrce2
write(*, 1018) option
write(*,i1032) k
write (*, 1013)
do 3 i=0, k-i

3 continue
endif

C WRITE TIHE INPUT~ SEQUJENCES fIT M~E: CONCORFT. DAT.

write(3,2000) nunipits
write(3,200i) Ni
write (3, *) '1NPUr SEQUENCE ,all (R.EAL)'
write(3,*) 'SAMPlE # (n)'

do 54 i=0, Ni-i
mf = i

write(3,2010) mi, real(xnl(i))
54 continue

write(3,2001) Ni
write (3, *) 'flNR.Tr SEQUENCE xnl (nAIGINARY)'
write(3,*) 'SA4PTE # (n)'I
write(3,*) 'IMAG xnl0'
do 55 i=0, Ni-i
mf = i

write(3,20i0) nn, aimag(xnl(i))
55 continue

write(3,2001) N2
write (3, *) InIM SEQUENCE mn2 (R.EAL)'
write(3,*) 'SAMPL # (ri)t

write(3,*) 'REAL xn20)'

231

do 56 i=O, N2-1

write(3,2010) mf, real(xn2(i))
56 continue

write(3,2001) N2
write (3, *) I nIM SEQUENCE =m2 (IMAGINARY)'
write(3,*) 'SAMPILE # (n)'

do 57 i=0, N2-1

write(3,2010) mn, aixnag(xn2(i))
57 continue

C WRITE INPUr DAa'A INTO FILE: CtNCORFT.WrI.

write(2, 1016) infile
write(2,1017) N1, dsrre1, N2, dsrce2
write(2, 1018) option
write(2, 1014)
write(2,1015) 'lxl)
do 65 i=0, Ni-i

write(2,1026) i, ,ail(i)
65 continue

do 66 i=0, N2-1
write(2,1026) i, xn2(i)

66 continue

C FOR LINEAR OONVOl17rION OR LINEAR Q)RREa=I(f BOIM INPUT ARRAYS
C ARE ZERO-PAD(ED TO IENGI!H N3 = 2**m WHERE 2**m IS QiMER TH1AN
c OR EQALTO N1i+N2 -1.

if((option.eq. 'ICON') .or. (option.eq. ICOR')) then
N3= Ni + N2 - 1

iend = N3
do 555 m,=0, 10

if(2**m - N3) 555,556,556
555 continue
556 N3 = 2**m

call zeropad (xnl,Ni, N3)
call zeropad(xn2,N2,N3)
errlif

C THE ARRAYS ARE RESEQ3FEICED IN BIT-REVERSED ORDER BEFORE THE
C FET CALCUIATION IS PERF004ED.

call reversal (N3 ,m,xn1,xtmpl)
call reversal (N3 ,m, xn2,xtip2)

232

call fft (N3, m, xtmi)

call fft(N3,m,xtmp2)

C IF option = ICOON I OR IICN' I PERFOW~ MNIUION Cxt(RJrATION.

if ((cption.eq. 'L00N') .or. (option.eq. 'COON')) then
do 22 i=O, N3-1

xtrap3(i) = xtmpl(i)*xtmp2(i)
22 continue

else

C IF option = 'COOR' OR 'IJXR' PERFOW CRREL.ATION CaqW1ION.

do 75 i=O, N3-1
xtmpl(i) = conjg(xiipl(i))
xtmp3(i) = xtmpl(i)*xtmp2(i)

75 continue

erdif

C TIHE RESULTING ARRAYS ARE RSEQUENCED IN BIT-REVERSED ORDER
C BEFORE TH!E INVERSE FF1' IS CALCULATED.

call reversal (N3 ,m, xtmp3 ,m3)
call inyvfft (N3 ,m, xm3)

C VWTM R1MLS flI= FILE: CflNCfRF'. DAa'.

write(3,2001) ierd
write(3, 2003) title
write (3, *) I SAM~PLE # (ni)
write(3,*) 'REAL xn3()'
do 58 i=0, ierd-1
mf = i

58 continule

write(3,2001) ierd
write(3, 2003) title
write (3, *) I'SAMPLE # (n)'
write(3,*) 'INAG xn30)'
do 59 1=0, ierd-1
mn= i
write(3,2010) nf, aimag~xn3(i))

59 continue

233

C MRIM R]SUS INTO FIIE: CONCORFT.Cwr.

write(2, 1025)
write(2,1015) 'xn3()'
do 67 1=0, ierxi-1

write(2,1026) i, xn3(i)
67 continue

write(*, 1019)
999 close (unit=1-)

close (unit=-2)
close (unit--3)
if(ierr.gt.0) then

endif

C ******** JNRJ'r F0O.T*****

1000 foniat(i3,tl,al)
1001 format(i3,tll,al,t21,a4)
1002 format.(2f1.0)

C ****************

1007 Ofoniiat(' option = ',a4,1, Ni ='IJ3,', N2 = ,i3,/,' For 1,
1' option = COO or COflR, N1 and N2 must be integer powers of 2.'

1008 Oformat(' option = ',a4,'1, NI = ', D,'1, N2 = 1,iD,'1, Error,' ,
1' Ni is not equal to N2.1)

1009 formt (x, alO,al,' Error, value niot allowed.')
1010 format (lx, aS,13, 2x,' Error, value niot allowed.')
1011 format (lx, 'option = ',a4, 2x, 'Error, illegal value for option.')
1012 Oformat (/,' I ME FMIRS I, il,'I VAXJES OF INRN DATA ARE LIS=E '

1/,' BUMrJ, VERIFY THlAT THE~ DATA IS CORRECr. I,/)
1013 Ofomt(t2,',lO'I,t53,'xn2',/,t4,'n,tll,'REAL',t27,

11IMAGINARY',t431 'REAL' ,t59, 'IMAGINARY')
1014 format(///,t21,'fINLIT~ DATA',//)
1015 format(/,t21,a7,/,t6, 'n',t13, 'REAL' ,t29, 'IMAGINARY')
1016 format(//////,'I INPUr DATA SCOJRCEFILE: 1,a12)
1017 Oformat('I N1 = I',iD,5x,'Idsrcel ='al,l10x, IN2 D, ', 5x,

1'dsrce2 = ',al)
1018 format (lx,'Ioption= 'a4)
1019 Oformat/,' I MHJLAR wrY= DATA IS SIORE IN FILE: (nNCx)R.(xr.'

1,/,'1 PI'II DATM IS STORED IN FILE: ()DNCORFr. DAT.)
1020 format(t4,il,4(4x,e12.6))
1025 fbrmat(///,t20,1JTUR DATA',//)
1026 fornnat(t4,i3,2(4x,e12.6))
1115 Ofornat(lx, 'DO YOUJ WISH To0 RUN 'lIS PROJGRAM IN TlEST,,

1' MODE ? (Y/N) <CR,> :I,\I
1116 Oformat (///, 1x, 'ERRODR 0PENIN INPJr FILE: 'a12, /, 1x, 'PROGRAM'

1' TER~iATE.',/1x,'IERRO)R (X)IE:'i4,///
1117 format (al)

234

1u.8 Oformat(/////,lx, 'TYPE T NAME OF YOUR DATA FILE FODLUJD',
1' BY <CR>.',/,' IF YOU DESIRE TO MAKE A = RUN USING THE',
2' SAMPLE DATA AREADY SIORED',/,' IN THE FILE: OONORFr.TT',
3' TYPE: NCOM.ST <CR>',/,' FILEAME: ,\,)

1119 format (al2)
2000 format(il)
2001 format(i3)
2003 format (a20)
2010 format(el2.6,2x,el2.6)

end

C SUROIUMNE: zeropad

C PURPOSE: hIS SUE40U E ACCEPIS AS INFUT THE COMPLEX ARRAY xn()
C OF LENGIH N, AND ZERO PADS THE ARRAY TO LENGI N3 WHERE
C N3 = N1 + N2 - 1.

subroutine zeropad (xn, N, N3)
ccmiplex xn(0:N3-1)

do 33 i=N, N3-1
xn(i) = cmiplx(0.0,0.0)

33 continue

returnendl

C SU rrTNE: invfft

C IRPOSE: MUIS SUBOIU E ACCEPIS AS N TUr THE COMPLX ARRAY
C x(), O:MrLES THE INVERSE FFT OF ThE ARRAY, AND
C REIURNS ThE RESULTING SEQUENCE IN THE ARRAY x0.

subroutine invfft (N,m, x)
ccmplex x(0:N-1)

en = N

C COMJE THE CCMPLEX COJUGATE OF THE INRJT DATA.

do 70 i=O, N-I
x(i) = conjg(x(i))

70 continue

235

C COMPTE THE FAST FOURIER TRANSFORK OF THE ARRAY.

call fft(N,m,x)

C COM TE COMPIEX CONJUGATE OF 'THE RSULTING ARRAY.

do 80 i=0, N-I
x(i) = conjg(x(i))/en

80 continue

returnend

C SUmrINE: reversal

C PURPE: THIS SUBROUINE ACCEPTS AS INUIT THE PLEX ARRAY
C xtmp(). THE CUTM"T OF MIS SUBROUINE IS THE CMPLEX
C ARRAY x() 9AT CONTAINS 'TE INfPT VALUES IN BIT-
C REVERSED ORDER.

subroutine reversal (N,m, xtnp, x)
ccmplex xtmp(0:N-1), x(0:N-i)

do 10 k=O, N-I
newaddr = 0
maddr = k
do 20 i=0, m-i

lnrdr = mod (maddr,2)
newaddr = newaddr + irnmdr*2** (m-l-i)
maddr = maddr/2

20 continue
x(newaddr) = xtmp(k)

10 continue

return
end

C SUBRINE: fft

C PURPOSE: THIS SUBROTINE ACCEPIS AS INIM THE CMPIEX ARRAY x(),
C CTIRES THE FAST FUURIER TRANSFDURM (FT) OF THE
C ARRAY, AND RETURNS THE RESULTING SEQUENCE IN THE
C ORIGINAL ARRAY x0.

subroutine fft (N,m,x)
complex x(0:N-1), W, trap

236

pi = 4.0*atari(1.0)
en = N

do 50 L=1l, m
ispace = 2**L
s = N/ispace
iwidth = ispace/2
do 40 j=0, iwidth-1

r = s*j
alpha = 2. 0*pi*r/en
W = anpix (cos (alphia), -sin (alpha))
do 30 itopp-j, N-2, ispace

iIhat = itop + iwidth
tmp = x(ibot)*W .
x (ibot) = x (itop) - p
X(itop) = X(itop) + p

30 continue
40 continue
50 continue

return
end~

C SUBROTINE: sam~pll

C PUROE: TBIS SUBRUTINE ALLOWS THE USER TO G MEATE SAMPLES
C OF A CNTINUOUJS FUNCT'ION AND STORE THEK IN TIHE ARRA
C xnl1() IF dsrcei = IS I THEN THE MIN PROGRAM WILL
C CALL THIS -SUBPOTINE TO GENERATE THE VALUJES FOR
C m10(). IF dsrcei DOES NOT EQUAL I'S' I THN THIS
C su xTIN WILL NOT BE CALLED BY THE MIN P!ROGRAM.

subrou~tine saupll(xnl ,Ni)
ccuiplex xal(O:N1-1)

pi =4.0*atan(1.0)
en1 Ni

C DEVEIDP THE SAMPLING ALtGORI'I11 FOR x1 () IN THIS SPACE. THE
C SAMgIM TYPED IN MUST FOLLW STANDARD FORTRAN 77 RULIES AND
C MAY USE FORTRAN 77 INTRINSIC FUNCTIONS SUCH AS: SIN(),(XOS(...
C AN EXAMPLE OF AN ALMORIEM GERATING VALUEFS FOR xml ()IS:
C
C **EXAMPLE "~

C

237

C do 6 i=O, Ni-i
C xil (i) = anplx (1.O,0.0)
C 6 continue

return

C SUROTINE: sanpl2

C PURPOSE: THlIS SU3ROUTINE ALLOWS ME~ USER TO0 GEERATE SA4PT-S
C OF A CO)NTINUOUS FUNCITN AND STORE THEM IN TIHE ARRAY
C xn2 (. IF dsrce2 = IS I THEEMAINPOGAM WILL
C CALL THIS SUPOU~INE TO GENERATIE UM~ VAUES FOR
C xn2(). IF dsrce2 DOES NOT EQUAL 'S' THiEN TH~IS
C SUMV1'IN WILL NOr BE CALL-ED BY 1THE MAIN PROGRAM.

subroutine sanpi2 (xn2,N2)
complex n2 (O:N2-1)

pi = 4.O*atan(i.O)
en2 = N2

C DEVELOP THE SAMPLING ALGORITH FOR xn2 () IN THIS SPACE. THE
C STATEENTS 1YPE IN M~iST FOLO STANDARD FORTRAN 77 RUJLES AND
C MAY USE FORIMA 77 INTRINSIC FUNCTIONS SUCH{ AS: SIN()OS ...)
C AN EXAMPLE OF AN ALGORITIHM GEN~ERATING VALUES FOR xm2 ()IS:
C
C *** EXAMPLE**
C!
C do 7 i=O, N2-1
C xn2(i) = cmplx(2.O,O.O)
C 7 continue

return
end

238

C CONOOR.FOR VERSION: 2/03/88
C
C
C PURPOSE: THIS PROGRAM PERFORMS E1HE THE LINEAR CONVOIU7 ON
C (ICON) OR THE LINEAR ClRRELATION (LOOR) OF TWO ARRAYS
C OF INPUT DATA. THE IROGRM CONSISTS OF A MAIN PROGRAM
C AND FOUR S.BROTINES. THE SUIEJIUINE conrvol PERFORK
c THE CONVOUION OF THE TWO INPUT ARRAYS xnl () and xn2 ()
c AND STORES THE RESULTS IN THE OUTPUT ARRAY yn). THE
C SUBROUTINE correl PERF01M THE ORRELATION OF THE TWO
C ARRAYS xnl() AND xn2() ACORDING0 TO HE EUATION:
C Rxmlxn2 (p) = SU[xnl (m) *xn2 (m+p)]. THE W) SUBR ES
C sanpll AND SAMPL2 ALLOW THE USER THE OPTION OF
C GENERATING EITHER OF THE Two INPUT ARRAYS BY wRIN
C THE APPROPRIATE EqUATIONS. IF THE USER CHOOSES To
C GENERATE THE INIT DATA BY USING EITHER OF THE sampl
C SUBJUINFES, THE EqUATIONS MST BE WRITTEN INTO THE
C SUBRTINES USING STANDARD FORTRAN 77 EXECITABLE STATE-
c MENTS AND THE VALUES GENERATED MUST BE STORED IN THE
C ARRAYS xnl() AND xn2(). THE USER HAS THE OPTION OF
C SELECTING ONE OF TWO OPERATING MODES: BATCH OR TEST. IN
c BATCH MODE THE AMOUNT OF INTERACrION WmTH THE USER IS
C MINIMIZED AND IT IS ASSUMED THAT THE INPJT PARAMETERS
C HAVE BEEN STORED IN THE INRJT FILE 'CONoR. IN'. IN
C TEST MODE THE USER IS PRaQTED FOR THE NAME OF THE
C INPUT FILE AND HAS THE OPTION TO PERPOMR A TRIAL RUN
C USING THE DATA STORED IN THE FILE 'CONCOR.TST'.
C IT IS RE~rNfENDED THAT FiRSr-IME USERS SELECT THE
C TEST MODE AND PERFORM A TRIAL RJN WITH THE PRESIoRED
C DATA. THE TEST MODE ECHOES PORTIONS OF THE INPUT
C DATA ONTO THE MONITOR TO AL.OW VERIFICATION OF ITS
C ACCURACY. THE OUTUT OF THE PROGRAM 'cONcoR.FOR' IS
c STORED IN THE ARRAY yn() IF LINEAR ONVOLUTION (LtON)
c IS SELCT OR IN THE ARRAY R() IF LINEAR CORRELATION
C (LOR) IS SELECTED. THE OTPUT IS STORED IN TAHILAR
C FORK IN THE FILE 'CONOOR.OUT' AND IN A FORM SUITABLE
C FOR PL0iTING IN THE FILE 'CONCOR.DAT'.
C
C
C *************** ******************************* f~1

c
c

C THIS PROGRAM ASaM THAT THERE ARE TM0 SEQUENCES OF INFUT DATA
C STOPED IN THE ARRAYS xnl() AND xn2(). THE SEQUENCE xn() EXSTS
C IN THE RANGE: nsl <= n <= nel. THE SEQUENCE xn2() EXISTS IN THE
C RANGE: ns2 <= n <= ne2. THE CONSTRAINTS ON THESE VALUES ARE:
C -128 <= sl <= nel <= 128 AND -128 <= ns2 <= ne2 <= 128.
C THIS PROGRAM ALLOWS THE USER THE OPTION OF EITHER READING
C THE IN7UT ARRAYS FRCK A DATA FILE OR OF GENERATING THE INFUT
C VALUES FROM AN ITERATIVE EQUATION IN THE sampl SUWOY N (S).
C THE PARAMETERS DESCRIBED BELOW ALuw THE USER To SELECT THE

239

C. r

C DESIRED OPTIONS AND THESE PARAMETERS KJST BE STORED IN THE IN UT
C FILE 'aONCOR.IN'. ALL OF THE READ SATEM4M USED BY THIS
C PROGRAM RE)QUIRE FORTED INPUT. PARPICULAR ATTENON SHOULD BE
C PAID TO THESE FOX4AM, ESPECIALLY M1E USE OF THE DECIMAL POINT TO
C DIST JIN(/lSH BEIWEEN 'REAL' AND INTEGER DATA.
C
C
C NAME TYPE RANGE (ARRAYS) RESTRICTIONS
C-
C option CHARACTER 'ICON' OR 'ICOR'
C nsl INTEGER -128 <= nsl <= 128
C nel INTEGER -128 <= nel <= 128
C dsrcel CHARACTER 'F' OR 'S'
C ns2 INTEGER -128 <= ns2 <= 128
C ne2 INTEGER -128 <= ne2 <= 128
C dsrce2 CHARACTER 'F' OR IS'
C xnl (n) REAL nsl <= n <= nel nsl <= nel
C xn2 (n) REAL ns2 <= n <= ne2 ns2 <- e
C
C WHERE:
C
C option = A CIARACTER STRING OF FOUR EITERS DENOTING THE
C C1OUTATION DESIRED: 'LJXN' = LINEAR CONVOIUT ION
C 'TLOR' = LINEAR CORRELATION.
C
C nsl = AN INTEGER. VALUE THAT SPECIFIES THE STARTING SAMPLE POINT OF
C THE SEQUENCE xnl().
C
C nel = AN INTEGER VALUE THAT SPECIFIES THE ENDING SAMPLE POINT OF
C THE SEQUENCE xr1().
C
C dsrcel = A CiARACTER VALUE OF 'F' OR 'S' DEN TING WHETHER THE
C INPUT ARRAY xnl() IS TO BE READ FROM A FILE (F) OR TO
C BE GENERATED (S) BY A USER-DEFINED EQUATION LOCATED IN
C THE SUBRCUTINE sanpll.
C
C ns2 = AN INTEGER VALUE THAT SPECIFIES THE STARTING SAMPLE OINT OF
C ME SEUENCE x2().
C
C ne2 = AN INTEGER VALUE THAT SPECIFIES THE ENDING SAMPLE POINT OF
C THE SEQUENmCE x2().
C
C dsrce2 = A CHARACTER VALUE OF 'F' OR 'S' DENOTING WHETHER THE
C INPUT ARRAY xn2() IS TO BE READ FROM A FILE (F) OR TO
C BE GENERATED (S) BY A USER-DEFINED EQUATION LOCATED IN
C THE SUBOTINE sanpl2.
C
C xnl() = THE FIRST ARRAY OF INPUT DATA. IF dsrcel = 'F' IS
C SPECIFIED, THE USER MJST SUPPLY THE Ni INPUT VALUES IN
C THE FILE (WHERE N1 = nel - nsl + 1). IF dsrcel = 'S'
C THE THE USER HAS ELECTED TO GENERATE THE INPUT
C SEJENCE xnl () BY WRITING THE APPROPRIATE FORTRAN

240

C SATE IN THE SPACE ALLOCATED IN SUT)FINE sapll.
C IF THIS METHOD OF DATA GENERATION IS ELECTED THE PAM
C MUST BE REC1MPILED BEFORE EXECUTION.
C
C xm2() = E SEND ARRAY OF INPUT DATA. IF dsrce2 = 'F' IS
C SPECIFIED, THE USER MUST SUPPLY M1E N2 INPUT VAIIJM IN
C THE FILE (WH N2 = ne2 - ns2 + 1). IF dsrce2 = 'S'
C THEN TME USER HAS ELECTED TO GENERATE THE INPUT
C SEQUENCE xn2 () BY WRITINM THE APPROPRIATE FORTRAN
C STATEMNS IN THE SPACE ALLOCATED IN SU RfMINE sampl2.
C IF THIS MEIHD OF DATA GENERATION IS ELECTED THE PROGRAM
C MUST BE IEC133PIIED BEFORE EXECUrION.
C
C NOTE: THE INPUT FOBOA STATEMENTS OCCUR IN THE MAIN PROGRAM
C FOIZ.OWING, THE CAPTION: ******** IU TOMAT *****
C THE FOR4 OF THE INPUr DATA FILE IS:
C
C LLNE# ENTRIES FORlT
C
C 1 option a4
C 2 nsl,nel,dsrcel i4,tll,i4,t21,al
C 3 ns2, ne2,dsrce2 i4,tll,i4,t21,al
C NOTEl xn1() flo.0
C NOTE2 xn2() flO.0
C
C NOTES 1. IF dsrcel = 'F' 1H THE NEXT Ni LINES MUST CONTAIN
C THE VALUES TO BE READ INTO THE ARRAY xnl ().
C IF dsrcej. = 'S' THEN THE USER HAS ELECTED TO GENERATE
C THE VALUES FOR al() IN THE SUBOTINE sainpll. THE
C USER MUST PROVIDE THE APPROPRIATE FORTRAN STATEMENTS
C IN SUBROUINE sampll TO GENERATE xnl().
C
C 2. IF dsrce2 = 'F' THEN THE NECT N2 LINES CONTAIN MHE
C VALUES TO BE READ INTO THE ARRAY n2 () .
C IF dsrce2 = 'S' THEN THE USER HAS ELEC TO GENERATE
C THE VALUES FOR xn2 () IN THE KWO]TIE sampl2. THE
C USER MUST PVIDE ME APPROPRIATE FORTRAN STEMENIS
C IN SUE71'INE sanpl2 TO GENERATE THE ARRAY xn2 0.
C
C 3. THE FORMAT f10.0 USED FOR INPUT DATA PERMITS THE
C DECIMAL POINT TO BE PLACED ANYWHERE IN THE FIELD OF TEN
C COIMNS AND ALSO ALLOWS THE EONENIAL FO1MAT TO BE
C USED (E.G., 3146.2 = 3.1462E+03).
C
C
C****************************** C*u**rr

C
C
C THE oUTTUr SEQUENCE GENEAED BY THE PRGRAM WILL EXIST ONLY OVER
C TIHE NON-ZERO RANGE DE!EM NED AS FOLIWS: FOR option = 'ON'

241

C yn (n) EXISTS~ IN T1HE RANGE nsl + ns2 <= n <-- nel + ne2; FOR option
C 'LCOR R(p) EXISTS IN MIE RANGE ns2 - nel <=- p <-- ne2 - nsl. THE
C INPUT DAMh AS WELL AS EHE wrTur MAI'A ARE ST1ORED IN TABULAR FO1R4
C IN TMH FILE lcam.awr'. AMMMrrIoALY, MIE MWFu SEW34CES AND
C THE wrnrr SEQUENCE ARE WRITMINT TM1 'H FILE Ia)NCCR. DAT' TO
C FA~CUXBM~ PLOTING-l BY A SEPARATE, USER SUPPLIED PRGAM. TMH
C POI4AT' OF TIHE DAT IN 'CNOOR.DATr' IS: e12.6, 2x, e12.6. TIHE
C FIS ENTRY CRRESPONDS M1 TlHE ORDINATE VALUE AND MIE SECOND ENTRY,
C TMH ABSCISSA VAfLUE. ADDITIONAL HEADER INFORMATION IS WRIT1ZE INT10
C 'atONCR. DAT' TO0 ALLOW1 FOR CONROL AND LABELING OF EACH PLOT.
C

C
C TMH INPUT' PARAMEERS BELOW ARE SIORED IN TiHE INPUT FILE
C I X)NCOR. TST. 1H - M 4GM READS THIE FIRST 4 VALUES I2-IM xml
C (dsroel = 'F'), AND READS THE NEXT 5 VAUES IN110 n2 () (dsrce2=
C 'F'). TIHE GOAL IS TO10 dV t7T'HE LINEAR CONVOUIN OF IME
C M1W INPUT' ARRAYS.
C
C THE SEQUENE xn1() ETEND FROK -3 T10 0 (nsl =-3, nel = 0).
C xnl (n) = 1. 0 FOR nsl <-- n <-- nel
C = 0. 0 OTHEEKISE
C
C TEHE SEQUEN1CE xn2 () EXITENDS FROM 0 TO0 4 (ns2 =0, ne2 =4).
C xi2 (n) = mi-i FOR ns2 <-- n <-- ne2
C = 0.0 OTHERW~ISE
C
C TIHE APROPIATE INI FILE ENT1RIES ARE:
C
C LCON
C -3 0000 F
C 0000 0004 F
C 1.0
C 1.0
C 1.0
C 1.0
C 1.0
C 2.0
C 3.0
C 4.0
C 5.0
C
C
C TIHE RESULTING 01~ DATA FILE 'CXJNCOR. OIT IS:
C
C INP)I' DAM SOUREFILE: 0ONCOR.T STr
C nsl = -3 nel = 0 dsrcel =F
C ns2 = 0 ne2 = 4 dsrce2 =F
C option =LOON

242

C
C INPUT~ DATA
C
C n xnl (n)
C
C -3 .100000E+01
C -2 .100000E+01
C -1 .100000E+01
C 0 .100000E+01
C
C n xn2 (n)
C
C 0 .100000E+01
C 1 .200000E+01
C 2 .300000E+01
C 3 .400000E+01
C 4 .500000E+01
C
C
c Onr DATA
C
C n yn(n)
C
C -3 .100000E+01
C -2 .300000E+01
C -1 .600000E+01
C 0 .100000E+02
C 1 .140000E+02
C 2 .120000E+02
C 3 .900000E+01
C 4 .500000E+01
C
C
C NOTE: FOR IILJSTRATIVE PRPOISES THIE INPUT SEQUENCES a11 ()
C AND xn2 () 00JID HAVE BEEN~ GDO4RATED BY WRITING T~l
C APPIAMI S TEMIS IN SJUINE sa1Tpl1 AND
C AND sanipl2. THE SMMM!E4~I HAT OILMD BE USED TO0
C ACCItPLISH TIHIS ARE WRITT INTIO THiE S--IUIE BEall
C ARE '0CHETED OUT'.
C
C

C********************* PROfGM~**************

character infile*12, option*4, mode*1, dsrcel*1, dsrce2*1
character ylabl*5, title*18, xlabl*12
real xril(-128:128) xn2(-128:128), yn(-256:256), R(-256:256)
real nn
integer p

243

C PT USER FOR MODE: BATCi OR TEST.

write (*, 1115)
read(*, 1117) moKde
if(((mde.eq. 'y') .or. (nxode.eq. 'Y')) then

mo~de =IYI
wrirte (*, 1118)
.Lead(*, 1119) infile
else

infile = 'CriNCOR. IN'I
erxiif

C UINT=1 DEINED AS INPEur =. UNTIS-2, 3 DEFIM~ AS CUTI!r7 FIES.

open (unit=1 , f ile-inf ile, status ''ol iostat--ierr, err--999)
open (unit=-2, file=' cIuflR.oWr')
open (unit=-3, f ile=' CONOR. DAT)

C READ INPUI! PARAM4ETERS AND cN1JCr ER1WR (2HECS.

read (1, 1000) option
read(1,1001) nsl, nel, dsrcel
read(1,1001) ris2, ne2, dsrce2

if ((option.eq. 'icon') .or. (option.eq. 'Low')) then
option IJO
ylabl = 'yn (n)'
xlabl = 'SAMPLE # (n)'
title = 'Linear Convolution'
ns3 = nsl + ns2
ne3 = nel + ne-2
elseif((ocption. eq. 'icor') .or. (option.eq. 'tDR')) then

option ='LLX)R

ylabl = RpI
xlabl = ' SAMPLE # (p)'
title = 'Linear Correlation'
ns3 = ris2 - nel
ne3 = ne2 - nsl
else

write(*, 1011) option
stop 'The allowed values for option are: ''LCONN" or ''TJXR' '*'
ernlif

if((ri.lt.-128).or.(nslgt.128)) then
write(*,1O10) 'nsl = ', nsl
stop '-The allwe values for nsl are: -128 <= nLsl <= 128.'
elseif((ns2.lt.-128) .or. (ns2.gt.128)) then

write(*,1010) Ins2 = ', ns2
stop 'The allowed values for ns2 are: -128 <= rs2 <- 128.'

erxif

244

if((nel.lt.-128).or.(nel.gt.128)) then
write(*,1O1O) 'nel = ', nel
stop 'The allowied values for nel are: -128 <- nel <- 128.'
els-eif((rke2.lt.-128).or.(nie2.gt.128)) then

write(*,10O) 'ne2 = 1, ne2
stop 'The allowed values for ne2 are: -128 <- ne2 <- 128.'
erxiif

if (nel.lt.nsl) then
write(*,1120) 'nsl = ', nsl, Inel = ', nel
stop 'The value nel nust, be greater than or equal to nsl.'I
enif

if (ne2. lt. ns2) then
write(*,1120) 'ns2 = ', ns2, 'ne2 = ', ne2
stop 'The value ne2 miust be greater than or equal to ns2.'
erxif

if((dsrcel.eq.'f').or.(dsrcel.eq.'F')) then
dsrcel = IF'
elseif((dsrcel.eq. 's') .or. (dsrcel-eq. 'S')) then

dsrcel = IS'
else

write (*, 1009) 'dsrcel = ,dsrcel

stop 'The allowed values for dsrce-l are: ''F" or ''S" *'

erxiif

if((dsrce2.eq.'f').or.(dsrce2.eq.'F')) then
dsrce2 = I'FI
elseif((dsrce2.eq.'s').or.(dsrce2.eq.'S')) then

dsrce2 = IS'
else

write (*, 1009) 'dsrce2 = ,dsrce2
stop 'The allowed values for dsrce2 are: ''F'' or ''5'' *'

erxiif

C DEFINE CONSTANTS ACORDING TO MIE FOLtf*JING SCHEME:

C N1 = M~E NUMBE OF SAMPI1M IN TIHE SEQUENE xnl
C N2 = TEHE NUMER OF SAMPIM IN TIHE SEQUENE xn2
C N3 = MIE NUMBER OF SAMPIES IN TEHE wUrarr SEQUENCE.
C k = A DUMM4Y VARIABLE USED FOR WRITING THE OUTPUT TIo THE MO~NITOR.
C nuumlts = A COlNTROL PARAMEIER FOR THE DATA STORED IN I CONCOR. DAT'

Ni = nel - nsl + 1
N2 = ne2 - ns2 + 1
N3 = ne3 - ns3 + 1
k= 8
numplts = 3

245

C FM dsrcef = 'F'I READ INPUT DATA FROK TH DATA, FIT.E.
C RV~ dsroe# = IS' CALL saml# TO0 GENERATE THE INPUT' DAMA
c imE INPUT DATA is SIORED IN TIHE ARRAYS ,crll xrl2O

if (dsrcel.eq. 'F') then

else
call sair,1l (nsl, nel, xiii)

if(dsroe2.eq. 'F') then
read (1,l1002) (xn2 (i) , i=ns2, ne2)
else

call sampl2 (ns2 ,ne2 ,xn2)
endif

C FOR TEST I4DDE ECHO INPE7T DATA ONTO) MONTOR (UNIT=

if(mode.eq. 'Y') then
write (*, 1016) inf i e
if((Nl.lt.8) .or. (N2.lt.8)) k=min(N1,N2)
write(*,1017) 'nsl = ',nsl, 'nel = I,nel, 'dsrcel = ',dsrcel
write(*1017) 1 ns2 = I ,ns2, I ne2 = I ,ne2, I dsrce2 = Idsroe2
write(* 1018) option
write(*103.2) k
write(*, 1013)
irxlxl - risl
irxbc2 = ns2
do 3 i=0, k-i

write(*,1020) ircbxl, xiil(irxl), indx2, xn2(inix2)
indxl = indxl+1
ixnix2 = indx2+1

3 continue
erdif

C WRT TIHE INPUT SEQLFNCES INTO FILE: CIONCIOR. DAT.

write(3, 2000) nunpits
write(3,2001) Ni
write (3,* 'INPrr SEQUENCE~ xni(n)'
write (3,* 'SAMPLE # (n)'
write (3,* xncl (n)'
do 55 nsl, nel
mn = n

write(3,2010) mf, xnl(n)
55 conytinue

write(3,2001) N2
write (3, *) I INPUT SEQUENC x12 (n)'
write(3,*) 'SAMPLE # (n)'
write (3,* 'm2 (n)'

246

li l , l ~il'', l~i l l l ''l~ l ~ ll ll 1,1~ ii Ll I D m m a

do 56 iris2, ne2
mf = n

write(3,2010) nn, xn2(n)
56 continue

C WRITE TIUEW DAMA IMI FIE: CONa)R. O)T.

write (2, 1016) infile
write(2,1017) I nsl = 'nsl, I'nel = 'nel, I dsrcel = 'dsrcel
write(2,1017) 'ns2 = ',ns2, 'ne2 = ',ne2, 'dsrce2 = ',dsrce2
write (2, 1018) option
write (2,1025) 'INPVT'

do 4 nwnsl, nel
write(2,1026) n, xnl(n)

4 continue

write(2,1015) In', 'xn2(n)'I
do 5 n-ns2, ne2

write(2,1026) n, xn2(n)
5 continue

C IF option = 'LON' CALL convol TO0 PERFORM4 XNVOUJTON COMPTATION.

if (option. eq. 'I OW) then
call conivol (nsl,Nl, ns2 ,N2 ,ns3, ne3 ,xm1, x2, yn)

C IF option = 'ILX)R' CALL correl TO0 PERFRM CRREIATION CtflU=0TN.

else
call correl(nsl,nel,ns2,e2,ns3,ne3,xn1,xn2,R)
eniif

C WRITE RESULT1S IM 1 FEE: QDNCOR.DAT.

write(3,2001) N3
write(3, 2003) title
write(3, 2004) xlabl
write(3, 2005) ylabl

do 57 nrns3, ne3
mn = n
if(option.eq. '1mWI) then

write(3,2010) mn, yn(n)
else

write(3,2010) mn, R(n)
enidif

57 continue

247

C MRITE RESULTS INTO FILE: CONCOR. OUT.

if (option. eq. 'ICON') then
write(2, 1025) 'OUTFTUI
write(2,1015) 'n', ylabl
do 9 nwrns3, ne3

write(2,1026) n, yn(n)
9 continue

else
write(2,1025) 'CUI!Ur'
write(2,1015) 'p', ylabl
do 11 p=ns3, ne3

write(2,1026) p, R(p)
U continue

endif

write (*, 1019)
999 close (unit=--1)

close (unit=2)
close (unit=-3)

if(ierr.gt.0) then
write(*,1116) infile, ierr
endif

C ******** INPUT FO****

1000 format (a4)
1001 format (i4, tll, i4, t21, al)
1002 format (fl0.0)

C ********************************

1009 format(ix,al0,al,' Error, value not allowed.')
1010 format(lx,a6,i4,2x, 'Error, value not allowed.')
1011 format(Ix, 'option = ',a4,2x, 'Error, illegal value for option.')
1012 Oformat(/,' THE FIRSTI ',il,' VAUES OF DINM DATA ARE LISTED ',

1/,' 1BELOW, VERIFY TH THE DATA IS CORREC .',/)
1013 format(t7, 'n',t12, 'xnl() ',t28, 'n',t33, 'xn2() ')
1015 format(/, t7, al, t14, a6,/)
1016 format(///,' INPUDATA SOURCEFILE: ',a12)
1017 format(lx,a6,i4,3x,a6,i4,3x,a9,al)
1018 format(lx,'option = ',a4)
1019 0format(//,' TAlUAR WI'PJI' DATA IS STORED IN FILE: CONCOR. T.',

I/,' ITING DATA IS STORED IN FIE: CONCOR. DAT. ')
1020 format(t4,i4,tlO,elO.4,t25,i4,t31,el.4)
10.25 formt(///,t7,a6,' DATA',/)
1026 format(t4,i4,t12,e12.6)
l115 Oformat (Ix, 'DO YOU WISH TO 1WN THIS PROGRAM IN TEST',

1' M .? (Y/N) <C ,\ 24

248

1116 Oforznat(///, lx, 'ERROR OPENING INP7r FIE: l,a12 ,/, lx, 'PROGRAM',

1.117 format (al)
1118 Oformat (/////, lx, I'TYPE THE MAME OF YOUR D~A FIE FOLLOEW'

1' BY <CO,>. ',/,'I IF YOU DEIRE TO KM A TEST RUN USING THE',
2' SAMPLE DATA ALREADY SIORED',/,' IN THE FILE: ONQZR.TST',
3' TYPE: CNXRST <CP',/, I FIfLENAME:'\,

1119 format (a12)
1120 forxat(2x,a6,i4,5x,a6,i4,5x, 'Error.')
2000 format (il)
2001 format(i3)
2003 format (aiB)
2004 format (a12)
2005 format (a5)
2010 fontiat(e12.6,2x,e12.6)

C SUROTINE: corivol

C P~UROE: THIS SUROTINE ACCEPTS AS INPUT MME ARRAYS a'il C)and
C! xn2 (), CXZ4R7ES THE LINEAR (CNVMtLTI0N OF THE ARRAYS,
C! AND REIURIM THE RESUIITING SEQUENTCE IN UME ARRAY yn 0

subroutine convol (nsl ,Nl, ns2,N2 ,ns3 ,rne3,xnal,,2, yn)

real xnl(-128:128), xn2(-128:128), yn(-256:256)

j 0

do 10 nFns3, ne3
yn (n) = 0. 0
do 20 i=j, 0, -1

if ((j -i. lt. N2) .arid. (i. lt. N1)) then
yn(n) = yn(n) + xn2(ns2-ej-i)*xnl(nsl+i)

erxlif
20 continue

= =j + 1
10 continue

return

249

C SUErINE: correl

C UROSE: THIS SUBJTfI"IE ACCEPTS AS INPUT THE ARRAYS xnl () AND
C xn2 (), AND C24PTES THE LINEAR CORREIATICN OF THE ARRAYS
C BY THE FaMM4IA R(p) = SUM[xnl (n) *xn2 (n+p)] FOR
C ns3 <= p <= ne3.

subroutine correl (nsl, nel, ns2, ne2, ns3, ne3, xnl, xn2, R)
real xnl(-128:128), xn2(-128:128), R(-256:256)
integer p

j -0
do 30 p=ns3, ne3

R(p) = 0.0
do 40 i=j, 0, -1

indexi = nel-j+i
index2 = ns2+i
if((indexl.ge.nsl) .and. (index2.le.ne2)) then

R(p) = R(p) + xnl(irdex1)*xn2(index2)
erdif

40 continue
j=j+l

30 continue

return
end

C SU WCUTINE: sampll

C PURPOSE: THIS SUOTINE AIWS THE USER TOMERATE SAMPLES
C OF A CONTINUOUJS FUNCTION AND STORE THEM IN ME ARRAY
C al() . IF dsrcel = 'S I T THE MAIN PROGRAM WILL CALL
C THIS SUBTINE TO GR4ERATE THE VALUE FOR xnl () .
C IF dsrcel DOES NOT EQUAL 'S' THEN THIS SUM IN WILL
C NOT BE CALLED BY THE MAIN PROGRAM.

subroutine sanpll (nsl, nel, xnl)

real xn (-128:128)

C* **** ** **

C DEVELOP THE SAMPLING ALGORITHM FOR xnl () IN THIS SPACE. THE
C STATEM1TS TYPED IN M1ST FOLLOW STANDARD FORTIAN 77 RDLES AND
C MAY USE FORTRAN 77 INTRINSIC FUNCTIONS SUCH AS: SIN(),COS() ...
C AN EXAMPLE OF AN ALGORITHM GENRATNG VALUES FOR ml() IS SH(WN.
C

250

C *** EXAMPE*
c
C do 6 rirwl, nel
C xnl(n) = 1.0
C6 continue

C* ******** **

return
end

c SUm F : sampl2

C PROSE: THIS S CUTINE ALLOS THET USER TO GENERAM SAMPLES
C OF A CtnMNUCWS FUNCTION AND STORE THEK IN ME ARRAY
C xn2(). IF dsrce2 = 'S' THEN iE MAIN PROGRAM WILL CALL
C THIS SUECWTINE TO GMERATE THE VALUES FOR xn2 () .
C IF dsrce2 DOES NOT EQ AL 'S' THEN THIS SUEFUI'INE WILL
C NOT BE CAMED BY THE MAIN PRGRAM.

subroitine sapl2 (ns2, ne2,xn2)
real xn2 (-128:128)

C DEVELOP HE SAMPLING AIORTHM FOR xn2 () IN TIS SPACE. THE
C S7ATEMEIS TYPED IN MJST FOLLOW STANDARD FORTRAN 77 RULES AND
C MAY USE FCORIAN 77 INTRINSIC FUNCTIONS SUCH AS: SIN() ,COS() ...
C AN EXAMPLE OF AN AIORITHM G E ATING VAUJES FOR xn2 () IS SHOWN.
C

C *** EXAMPLE ***
., CI

C do 7 rms2, ne2
C xn2(n)= n + 1.0
C 7 continue

*** **** ** ***

return
end

251

C DIFFEQ. FOR VERSIO: 2/03/88
C
C
C PURPOSE: THIS PROGAM Cl4PUTES THE ITERATIVE SOLUTION TO A
C LINEAR, TIME-INVARIANT (LTI) DIFFERENCE ATIN.
C THE DIFFERENCE QJATIN MUST BE IN THE FORM:
C y(ns) = a(1)*y(ns-1) + ... + a(N)*y(ns-N) +
C b(0)*x(ns) + b'1)*x(ns-1) + ... + b(L)*x(ns-L).
C THE PROGRAM CONSISTS OF A MAIN PROGRAM AND TWO
C S uC'nNES. SU7IBRO!N diffeq IS CALLED BY THE MAIN
C PROGRAM TO ITERATIVELY SOLVE THE DIFFERENCE EQUATIONS AND
C SUBRUINE xgen AUtM THE USER THE OPTION OF GENERATIN
C TE INPUT SEQENCE x() BY WRTINM THE APROIATE
C EQUATIONS. IF THE USER ELECTS TO GNERATE THE SEQUENCE
C x() BY USING xgen THN THE PROGRAM MUST BE COMPILED
C AGAIN BEFORE EXECUTION. THE USER HAS THE OPTION OF
C SELECIIING ONE OF TWO OPERATING MODES: BATCH OR TEST.
C IN BATCH MDE THE AMOUNT OF INTERFACE WITH THE USER
C IS MINIMIZED AND IT IS ASSUMED THAT MIE INPIT DATA
C HAS BE STORED IN THE DEFAULT FILE 'DIFFEQ.IN'. IN
C TEST MODE THE USER IS PFPIE FOR THE NAME OF TIHE
C INPUT FILE OR HAS T'HE OPTION OF PERFOR~iG A TEST RUN
C USING THE INPUT DATA STORED IN THE FILE 'DIFFEQ.TST'.
C IT IS RECOMENDED TT FIRST-TIME USE SELECT THE
C TEST MODE AND MAKE A TRIAL N WITH THE PRESIORED
C IN3LT DA. THE TEST MODE ECHOES PRIONS OF HE
C INPUT DATA ON I HE 1NITOR TO ALLOW VERIFICATION OF
C ITS ACCURACY. BOTH BATCH AND TEST MODES AIIOW THE
C USER TO SOLVE UP TO FOUR DIFFERENCE EMTIONS IN A
C SINGLE PF40AM EXECUTION. THE OTPUT OF THE PROAM
C 'DIFFEQ.FOR' IS STORED IN THE ARRAY yo. THE OTPUT IS
C STORED IN TAB0lAR FORM IN THE OUIrPUr FILE 'DIFFEQ.FOR'
C AND IN A FORM SUITABLE FOR PIITING IN THE FILE
C 'DIFFEQ.DAT'.
C
C
****************************** *INPUT

C
C
C HIS PROGRAM ASSUMES THAT EACH DIFFERENCE EQUATION IS IN THE
C CANONICAL FORM:
C
C y(ns) = a(1)*y(ns-1) + ... + a(N)*y(ns-N) +
C b(0)*x(ns) + b(1)*x(ns-1) + ... + b(L)*x(ns-L)
C
C L = A NON-NEGATIVE INTEGER, THE NUMBER OF INPU' DELAYS.
C N = A NON-NGTIVE INTEER, THE NUMBER OF OUTPUIT DELAYS.
C
C a(l) .. .a(N) = REAL COEFFICIENTS OF THE OUTUT TEEMS.
C b(0) ... b(L) = REAL COEFFICIENTS OF THE INPUT TERMS.
C

252

IL9

C THE INP7I PARAMETERS SHOULD BE STORED IN A FILE NAMED
C 'DIFFEY. IN'. ALL OF THE READ SnUEI' USED BY THIS PGRAM
C REQUIRE FORMATED INIUT. PARTICJIAR ATTENTION SHOXU) BE PAID
C TO THE FORikTS, ESPECIALLY THE USE OF THE DECIMAL POINT TO
C DEN1' 'REAL' NUMBE. THE INPUT PARAMETERS REQUIRED BY THE
C PROGRAM ARE LISTED BELOW.
C

C NAME TYPE RANGE (ARRAYS) RESTRICTIONS
C --
C numys INTEGER 1 <- ruisys <= 4
C L INTEGER 0 <= L <= 128
C N INTEGER 0 <= N <= 128
C nstop INTEGER 0 <= nstop <= 300
C xsorce CHARACIER 'F' OR 'S'
C b(k) REAL 0,1, ... , L 0 <= L <= 128
C a(k) REAL 1,2, ... ,N 0 <= N <= 128
C y(k) REAL -N, ... , -1 1 < N < 128
C x(ns) REAL 0,1, ... , nstop 0 <= nstop <= 300
C
C WHERE:
C
C numsys = TE NUMBER OF SYSTEM TO BE EVALUATED.
C THIS INTEGER VALUE MST OCCUR AT THE TOP OF THE INPUT
C FILE. IT DELINEATES THE NUMBER OF SYSTEMS TO BE READ BY
C THE PROGRAM AND ANALYZED. FOR EACH SYSTEM (1... numsys)
C THE PARAMETERS BELOW MUST APPEAR IN THE INPUr FILE.
C
C L = AN INTEGER VALUE THAT SPECIFIES THE MAXIMUM NUMBER OF DELAYS
C IN THE INPUT SEQUENCE.
C
C N = AN INTEGER VALUE THAT SPECIFIES THE MAXIMUM NUMBER OF DELAYS
C IN THE OTPUT SEQUENCE.
C
C nstop = AN INTEGER VALUE THAT SPECIFIES THE LAMEST TIME INDEX
C (ns) FOR WHICH THE DIFFERENCE EQUATION IS TO BE SOLVED.
C
C xsorce = A CHARACTER VALUE OF 'F' OR 'S' DENOTING WHETHER THE
C INPUT SEQUENCE x() IS TO BE READ FROM THE INPUT FILE (F)
C OR MO BE GENERATED (S) USING THE SUEMETNE xgen. TIS
C LATER OPTION IS ATTRACTIVE WHEN nstop IS A LARGE NUMBER
C AND THE INPUT SEQUENCE x() CAN BE READILY DESCRIBED BY AN
C ANALYTICAL EXPRESSION. IF xsorce = IS' THE USER MUST
C PROVIDE THE APPROPRIATE FRIRAN STATEMENTS IN ME SPACE
C PROVIDED IN SUBROUIME xgen AND THE PROGRAM MUST BE
C RECOPILED BEFORE EXECMION.
C
C b (k) = REAL COEFFICIENTS OF THE INPUT SEQUENCE x(ns-k) IN THE
C ORDER: b(0), b(1), ... , b(L).
C

253

C a(k) = REAL OEFFICIENTS OF THE C SEQUENCE y(ns-k) IN THE
C ORDER: a(1), a(2), ... , a(N). IF N = 0 HEN THE QATION
C IS NON-RECURSIVE AND NO a(k) COEFFICIETS SHCULD BE IN
C THE INPUT FILE.
C
C y(k) = THE INITIAL CONDITIONS FOR THE OUTPUT SEQENCE IF IRE
C DIFFERENCE E=AIN IS RECURSIVE, I.E., N > 0. THIS
C PROGRAM CAI0I.ATES THE SOLUTION TO THE DIFFERENCE
C EJ[ATION FROM ns = 0 TO ns = nstop THEREFORE THE INITIAL
C CONDITIONS y(-N) TO y(-l) MUST BE PROVIDED IN THE INPUT
C FILE IN THE ORDER: y(-N), y(-N+1), ... , y(-1). IF N = 0
C THEN TE EQUATION IS NON-RECURSIVE AND NO INITAL
C CONDITIONS SHOUID BE GIVEN IN THE INPUT FILE.
C
C x(ns) = THE INPUT SEQUENCE. IF xsorce = 'F' THEN THE INRT
c SEQUENCE x(O), ... , x(nstop) MUST BE PVIDED BY THE USER
C IN THE INPJT FILE. IF xsorce = 'S' THEN THE USER HAS
C ELECTED TO GENERATE THE INPUT SEQUENCE BY PROVIDING THE
C APPRDPRIATE FORTRAN SATEMNTS IN THE SUBOTINE xgen.
C
C NOTE: THE INPUT FORMAT STAEENTS OCCUR IN THE MAIN PROGRAM
C FOLLOWING THE CAPTION: ******** I T FORMAT ********.
C THE FORM OF THE INPUT DATA FILE IS:
C
C LINE # ENTRIES FORMAT
c
C 1 numsys il
C 2 L,N,nstop,xsorce i3,tll,i3,t21,i3,t31,al
C NEXT NB LINES b(k), k=0,1,...,L 6f10.0
C NEXT NA LINES a(k), k=l,...,N 6f10.0
C NEXT NY LINES y(k), k= -N,...,-I 6f10.0
C NEXT NX LINES x(ns), ns= 0,...,nstop 6f10.0
C
C WHERE: NB = 1 + (/6 RUNDED DOWN TO THE NEXT SMALLER INTEGER)
C
C NA= 0 IFN= 0 OR
C NA = 1 + ((N-1)/6 ROUDED DOWN TO THE NEXT SMALLER INTEGER)
C
C NY = 0 IFN= 0 OR
C NY = 1 + ((N-1)/6 ROUNDED DOWN TO THE NEXT SMAI.ER INTEGER)
C
C NX = 0 IF xsorce = 'S' OR
C NX = 1 + (nstop/6 RONDED DOWN TO THE NEXT SMArLL INTGER)
C IF xsorce = 'F'
C
C *NOTE: FOR numsys > 1 THE FORMAT OF LINES 2... IS REPEATED.
C
C THE FORAT f10.0 USED FOR INPUT DATA PERMITS THE DECIMAL
C POINT TO BE PLACED ANYWHERE IN THE FIELD OF 10 COLUMNS
C AND ALSO ALLOWS THE EXKONEnTIAL FORMAT TO BE USED (EG.
C 3146.2 = 3.1462E+0?).
C

254

C

C
C
C THE INPUT DATA AS WELL AS THE OUTPU DATA ARE STORED IN TABULAR
C FOM IN THE FILE 'DIFFEQ.OUT'. ADDITIONALLY, THE INPUT SEQUENCE
C AND THE OU SEQUENCE ARE WITTEN INTO THE FILE 'DIFFEQ.DAT' TO
C FACILTT PLOTTING BY A SEPARATE, USER SUPPLIED PROGRAM. THE
C F0RMAT OF M1E DATA IN 'DIFFEQ.DAT' IS: e12.6, 2X, e12.6. THE FIRST
C ENTRY CORRESPONDS TO HE ORDINATE VALUE, AND MTE SECOND ENTRY, THE
C ABSCISSA VALUE. ADDITIONAL HEADER INF0F@TION IS WRITT INTO
C 'DIFFQ.DAT' TO ALUMW FOR CONTROL AND LABELING OF EACH PLOT.
C
C
****************************** EXAMPLE ******************************

c
c
C THE INPUT PARAMEITERS FOR THE SYSTEM DESCRIBED BELOW ARE STORED IN
C THE SAMPLE INPJT FILE 'DIFFEQ.TST' AND CAN BE USED FOR A TRIAL
C RUN IN TEST MODE.
C
C DIFFERENCE EQUATION:

C y(ns) = 1.2*y(ns-1) + 1.5*x(ns)
C
C GOAL: TO OBTAIN THE SOLUTION TO THIS DIFFERENCE EQUATION FOR
C ns = 0 TO ns = 10, GIVEN: x(0)...x(10) = 100.0 AND
C THE INITIAL CONDITION y(-1) = 25.0.
C
C

C THE INPJT FILE IS:
C
C 1
C 000 001 010 F
C 1.5
C 1.2
C 25.0
C 100.0 100.0 100.0 100.0 100.0 100.0
C 100.0 100.0 100.0 100.0 100.0
C
C
C THE RESULTING (XTPYT FILE 'DIFFEQ.OUT' IS:
C
C INPUT' DATA FOR PROBLEM # 1
C
C PROBLEM # 1 INPUT DATA SOURCEFILE: DIFFEQ. TST
C THE NUMBER OF INFUT DELAYS: L = 0
C THE NUMBER OF OUTPUT DELAYS: N = 1
C THE VALUE OF nstop IS: 10

255

C ME CIEFFICmIMMb(o), b(1), ... , b(L) ARE:
C!
C .150000E+01
C
C!
C 1 OEFFITCINS a(l), ... , a(N) ARE:
C
C .120000E+01
C
C
c wrair DAT. FXR PRBfLM # 1
C
C nis x(ns) y(ns)
C -1 .000000E+00 .250000E+02
C! 0 .100000E+03 .180000E+03
C 1 .100000E+03 .366000E+03
C 2 .100000E+03 .589200E+03
C 3 .10n000E+03 .857040E+03
C 4 .100000E+03 .117845E+04
C 5 .100000E+03 .156414E+04
C 6 .100000E+03 .202697E+04
C 7 .100000E+03 .258236E+i04
C 8 .100000E+03 .324883E+04
C 9 .100000E+03 .404860E+04
C 10 .100000E+03 .500832E+04
C
C END OF PRBLEM # 1
C
C
C FOR IUSIRAT RPOFSES TEHE EiUT SEQUENCE x() CO~LM HAVE BEEN
C GENERATED BY SPECIFYIN~G xsoroe = 'S5I AND wRITflNG UM~ App~FpRaTE
C FORM~AN STEMR rnuir INK)rl mU~~h gen. THlE sTATIm11s umHA
C COULID BE USED TO0 ACCZ4PLSH =ItE ARE wRITTE I=K TH~E SUE= =IN
C BJT AIRE 'C13MENTED CUff.
C
C

character infile*12, mode*1, xsorce*1

real a(1:128), b(0:128), y(-128:300), x(-128:300), ii

C PR43Pn USER FO)R MODE: BATCH OR TMS.

write (*, 1115)
read(*, 1117) mode
if((xmode.eq. 'Y') .or. (mode.eq. 'y')) then

mx~e =I I
write(*, 1118)
read(*,1119) infile
else

256

infile = 'DIFFQ.IN'

erxif

C UNT-1 DEFNED AS INP7r FnlE. UNIS=-2, 3 DEFINE AS anPUr FILES.

open (unit=1, file-infi-le, status- 'old', iostat--ierr, err=-999)
open (unit=-2 ,file-' DIFFEQ. aIT')
open (unit=-3 ,fle-' DIFF3Q. DAT')

C READ INPUT' PARAETERS AND CNUCr ERRCRR aiECKS.

read(l,l000) numsys

if((numisys.le.0) .or. (nurnsys.gt.4)) then
write(*,1J26) nusys
stop 'Tlhe allowed values for numisys are 1 <=- nunisys <-- 4.'
erdiif
nunplts = 2*ntmisys
write (3,2000) nunpits

do 10 nprob=1, numsys

read(1,100l) L, N, nstop, xsorce

if((L.lt.0) .or. (L.gt.128)) then
write(*,1124) nprob, 'LI, L
stop 'The allowed values for 'ILI' are: 0 <=- L <=- 128.'

endiif

if((N.lt.0) .or. (N.gt.128)) then
write(*,1124) nprob, 'N', N
stop 'The allowed values for 'IN'' are: 0 <=- N <-- 128.'

erdif

if((nstop.lt.0) .or. (nstop.gt.300)) then
write(*,1127) nprob, nstop
stop 'The allowed values for nstop are: 0 <-- nstop <-- 300.'

erxiif

if((xsorce.eq. 'F') .or. (xsorce.eq. 'f')) then
xsorce = 'F'I

elseif((xsorce.eq. 'S') .or. (xsorce.eq. 's')) then
.Nsorce S '5

else
write(*,1128) nprob, xsorce
stop ' The allowed values for ''Ixsorce ' are: ''IF'' or ''I '*'I

endif

C INITALIZE EACH ARRAY TOD ZERO BEFORE EACH RUN.

data a/128*0.0/, b/129*0.0/
data y/429*0.0/, x/429*0.0/

257

C READ 711E COEFFICINS b (,a () AND T1HE INITIAL 0ONDITIONS
C y (-N) ... y(-1) .

read (1, 1002) (b (k) , v=o, L)
if (N. gt. 0) then

icstart = -N
read(1,1002) (a(k), k=1-,N)

ern.if

C FOR xsorce = IF I READ MIE ARRAY x() FRO4 TIHE INPUT FILE.
C FOR xsorce = 'I S ICAL ,agen TOD GNERA'E MIE ARRAY x()

if (xsorce.eq. IV) then
read(1,1002) (x(k), k=O,ristop)

else
call xgen (x, nstop, nprob)

erdif

C FOR TEST MOrDE ECHO INPUIT PARAMEE1M0ONTO MONITO0R (UNIT=

if(nxode.eq.'Y') then
write(*, 1007)
write(*,1120) nprob, infle
write(*, 1110) IINPrI, ILI, L
write (*,l1110) 'WfUTUT, IN', N
write(*,1112) nstop
write(*, 1004)

if(N.eq.0) then
write(*, 1131)

else
write(*, 1006)
write (*, 1005) (a (k) , k-1, N)

erxdif
write(*,1123) nprob
pause I'END OF RUJN, STRIKE <Vs> WHEN READY TO0 CONTINUJE.

erdif

C WRITE INPrT DATA INTO0 FILE: DIFFEQ. OUT.

write(2,1008) oflurT, nprob
write(2,1120) nprob, infile
write (2, 1110) 'INPrJ'T, ILI, L
write (2, 1110) 'wruTP'T, IN', N
write(2,1112) nstop
write(2, 1004)
write(2,1005) (b(k) ,k=0,L)

258

if(N.eq.O) then
write (2 ,113 1)

else
write(2, 1006)

erxiif

C WRITE TIHE INPUT! SEQUENCE IM11 FILE: DIFFEQ. DAT.

write(3,2001) nstop + 1
write(3,*) 'INOM SEQUENCE x(ris)'
write(3,*) 'SAMPLE # (i's)'

do 54 ns=J, nstop
ii = i's
write(3,2010) ii, x(ns)

54 continue

C CALL diffeq TO COMMI! UMH SOUJTIOtf TO TBE DIFFERENCE EMJATION.

call diffecq(N,L,a,b,x,y,nstop)

C WRITE REULT INTO0 FTLE: DIFFQ. DAT.

write(3,2001) N + nstcp + 1
write(3,*) 'ciir SEQUENCE Y(ns)'
write (3, *) ' SAMPLE # (i's)'
write(3,*) 'y(is)'I
do 55 ns= -N, nstop

ii = i's
write(3,2010) ii, y(ns)

55 continue

C WRITE RESULTES INM1 FILE: DIFFEQ. WI.

write(2, 1008) 'WflUI', nprob
write (2, 1129)
do 102 ns= -N, nstop

write(2,1130) i's, x(ns), y(ns)
102 continue

write(2, 1123) nprob

10 continue

write(*, 1121)
999 close (unit=1I)

close (unit--2)
close (unit=3)

if(ierr.gt.0) then
write(*, 1116) ierr

erdif259

C******** INPUT FORMAT ****

1000 format (ii)
1001 formt(i3,tl,i3,t21,i3,t31,a1)
1002 format (6f10. 0)

1004 fonuat(t4,"IHE CEFCISb(o), b(1), ... , b(L) ARE:',/)
1005 formiat (6 (lx,e12. 6))1
1006 format(//, t4,"ITHE CEFFICIENTS a (1) , a. a(N) ARE:'/
1007 formoat V111111111/)
1008 formt(///, t16, a6,'I DAA FOR RBLEM # 'il,//
1110 fomat (t4,HENUMER0F I',a6,'I DELAYS: 'al,' ='i3)

112 format(t4, THE VAI.UE OF nstop IS: I, i3)
1115 Oformt (lx, 'DO YOUT WISH TO 1WN fTIS PRGAM IN TEST,

1116 Oformat (///, lx, I ERROR OPENING INPUT FIIE, PROGAM T.ERCINTED.'
1//,l1x, I'ERROR CO)DE: 'i4,///

1117 format (al)
1118 0format (/////, lx, 'TPE THE NMME OF YOUR DATA FIL FOLLOED',

1' B3Y <CR>., /,'I IF YO DESIRE TO MAKE A TEST RUN USING EIE',
2' SAMPLE DATA ALREADY STORED',/,'I IN TIHE FILE: DIFFEQ.T ST',
3 ' TYPE: DIFFEQ.TST <2Z>',/, I FILENAME:'\,

1119 format (a12)
1120 format (///, t4,POBU4# ,il,' INPUT DATA SXRCEFILE: I, a12)
1121 Oformat(//,'I TAWJIAR wrTPr DATA IS STOE IN FILE: DIFFEQ. CU.'

1,/,'1 PwrTIIN DA IS STORED IN FILE: DIFFEQ.DAT.'1)
1122 forniat(i3)
1123 forma(/1x, 16 (1-1),' END OF PRBUX! #',i2,2x,16('-')//)
1124 Ofoniiat (//,'I For problemt # , i2,' the value for ,al,'I is: ,

1' . This value is not allowed.
1126 format(//,' numsys = ',i4,'. This valueis not allowed.')
1127 Oformat(//,' For problem #',i2,' the value for ''nstop'' is: ',

1i3, 1. This value is not allowe.)
1128 Oforxnat(//,' For problem #',i2,' the value for ''xsorce'' is: 1,

lal,'1. This value is not allowed.'1)
1129 format(t6, Ins' ,tl6, 'x(ns) 1,t35, 'y(ns) 1)
1130 fonnat(t4,i4,tll,e14.6,t30,e14.6)
1131 format(/, I THISSYSEM IS NON-RELIVE, I.E., N=0.)
2000 format(il)
2001 format(i3)
2010 format(e12.6,2x,e12.6)

end,

260

IN I'

C SUq)TNE: diffeq

C PURPOSE: THIS SUOTINE COPTES THE SOLUTION TO A DIFFERENCE
C EQUATION. ALL PARAMETERS DESCRIBING THE EQUATION, AND
C THE INPUT AND OUTPUT SEQUENCES x() AND y() ARE PASSED
c TO THE SUETINE BY THE MAIN PAM.

subroutine diffeq(N, L, a,b,x,y, nstop)
real x(-128:nstop), y(-128:nstop), a(l:N), b(0:L)

do 500 ns=0, nstop
y(ns) = 0.0
do 501 k=0, max(N,L)

y(rns) = y(ns) + a(k)*y(ns-k) + b(k)*x(ns-k)
501 continue
500 continue

returnend

C SUBROTINE: xgen

C PURPOSE: THIS SUOTINE ALLWS TE USER To GENERATE VALUES FOR
C THE ARRAY x(). IF xsorce = IS' THE MAIN PROGRAM WILL
C CALL THIS SUBROUTINE. IF xsorce = 'F' THIS SU3RJTINE
C WILL NOT BE CALLED BY THE MAIN PGRAM.

subroutine xgen (x, nstop, nprob)

real x(-128:nstop)

C***** **

C DEVELOP THE ALROR FOR GENERATIN VALUES OF x() IN THIS SPACE.
C MIE STATEM TYPED IN MUST FOLLOW STANDARD FORTRAN 77 (JIES AND
C MAY USE FORTRAN 77 INTRINSIC FUNCTIONS SUCH AS: SIN(), COS(), ...
C NOTE THAT THE VALUE nprob CAN BE USED IN A LOGICAL 'IF' STAMMN
C TO MATCH THE GENERATING FUNCTIONS TO TE ORRESPONDING SYSTEM
C EQUATION READ FROM THE INPUT FILE IF MORE THAN ONE SYSTEM OF
C EQUATIONS EXIST. AN EXAMPLE OF AN ALGORITHM GENERTING VALUES
C FOR x() IS:
C
C

261

I llill 1111 1 111 11 11 11111!,1 illI Ill1 lm mI

Cfl* EXAMPLE**
C
C if (rto. eq. 1) then
C do 1. k=O, rwtcp
C x (k) - 100. 0
C 1 continue
C erdif

return

262

C STATEQ.FIOR VERSION: 2/03/88
C
C
C PURPOE: HIS PROGRAM COM TES THE ITERATIVE SOIUTION TO A SET
C OF LINEAR, TIME-INVARIANT STATE EBJ1TIONS. THE FORM
C OF THE STATE EQUATIONS IS:
C
C v(rs+l) = Av(ns) + Bx(ns)
C y(ns) = Cv(ns) + M (ns)
C
C WHERE A, B, C, D ARE MATRICES OF !E SYSTE4 CONSTANTS,
C v IS THE STATE VECTOR, x IS THE INWJT VECIOR, AND y
C IS THE OUTPU VECIOR. THE PR)GRAM CONSISTS OF A MAIN
C PROGRAM AND MIO SUERUF- ES. TE SUBROUINE xgen GIVES
C THE USER THE OPTION OF GENERATING THE VECTOR INPUT
C SEQUENCE x() BY WRITNG THE APPRPRIATE E7NMTONS IN THE
C SPACE AIIOCATED IN THIS SUROUTINE. IF THE USER CHOOSES
C MO GENERATE TH INPT DATA. BY USING SUROUINE xgen THE
C EQJATIONS MOST BE WRITTEN INTO TME SUOTINE USING
C STANDARD FORIRAN 77 ECTABLE STATMENTS AND THE VAlUES
C GENERATED MUST BE STORED IN THE 2-DIMENSIONAL ARRAY
C xs(). THE SUOTINE itrate COMPUTES THE STATE OF THE
C SYSTEM v(), AS WELL AS THE OUTPUT OF THE SYSTEM y(), FOR
C EAC{ VALUE OF ns FROM ns = 0 TO us = nstop. THE USER
C HAS THE OPTION OF SELECTING ONE OF TW OPERATING MODES:
C BATai OR TEST. IN BATCH MODE THE AMUNT OF INTERFACE
C WITH 71E USER IS MINIMIZED AND IT IS ASSUMED THAT HE
C INPUT PARAMETERS DESCRIBED BELOW HAVE BEEN STORED IN
C THE INPUT FILE IS M. IN'. IN TEST MDDE THE USER IS
C P4PTD FOR THE NAME OF THE INPUT FILE AND HAS THE
C OPTION OF PERFORMING A TEST RJN USING THE DATA STORED IN
C IN THE FILE 's E. ST'. IT IS RE*IENDED 'U FIRST-
C TIME USERS SELECT TEST MODE AND PERPORM A TRIAL IUN
C WITH THE PRESTORED DATA. THE TEST MODE ECHOES PORTIONS
C OF THE INPUT DATA CO THE M(NITOR MO ALLOW VERIFICATION
C OF ITS ACCURACY. THE OTPUT OF THE PROGRAM 'STATEQ.FOR'
C IS STORED IN THE 2-DIMENSIONAL ARRAY ys() AND THE SYSTEM
C STATES ARE STORED IN TfE 2-DIMENSIONAL ARRAY vs(). THE
C INPUT VALUES, SYSTE2 STATES AND THE OUTPUT DATA ARE
C STORED IN TABJIAR FORM IN THE FILE 'STATEQ.OUT' AND IN A
C FaN SUITABLE FOR PWIDTING IN THE FILE 'STATEQ. DAT'.
C
C
****************************** IS NPUT

C
C
C THIS PROGRAM ASSUMES THAT THE STATE EQUATIONS ARE IN THE
C FO M4
C
C [vl(ns+l)] C all ... aNN] [vl(ns)] [bll ... blM] [xl(ns)]
C [v2(rns+l)] C a21 ... a2N] C v2(ns)] (b21 ... b2M] (x2(ns)]

263

C [... J = I +
C [vN(rs+l)) [a ... aNN] (vN(ns)) (1 ... bNK) [:d4(ns)J
C
C
C
C [yl(rs)] (cll ... ciN] [vl(ns)] [dl ... dIM] [xl(ns)]
C (y2 (rns)] [c21 ... c2N] (v2 (ns)] (d21 ... d2M] [x2 (ns)]
C I ... I [...]*[...] + [...]*[... I
C [yQ(ns)] (c1 ... cQN] [vN(ns) (dQl ... dcQ] [W4(ns)]
c
C N IS THE NMMBER OF SYSTEM STATES.
C M IS THE NUMBER OF SYSTEM INPUI.
C Q IS T K MER OF SYSTEM an7M.
C
C x IS M x 1 NUTVECOR.
C v ISTHENx 1 STATE.VECTR.
C y IS TEQx 1 Ur VECOR.
C A IS AN N x N MATRIX OF ONSTANTS.
C B IS AN N x M MATIX OF CONSTANTS.
C C ISAQxNMAIMOF CONSTANTS.
C D IS AQxMMATRIXOF CONSTANTS.
C
C
C MHE SOI)TIN IS GENERATED IN THE INTERVAL 0 <= ns <= nstop. ME
C USER MUST PROVIDE HE MRICES A, B, C, D AS WELL AS E INITIAL
C VALUES OF ME STATE VECTOR v IN HE INPUT FIlE. THESE IFUIS, AS
C WELL AS TfE PARAMEERS DESCIBED BELO, StULW BE SI-RED IN THE
C INI.U FILE 'STATEQ. IN'. ALL OF THE READ SnUMENTS USED BY THIS
C PAM RE7JIRE FOR4AITED INPUr. PARTICJIR ATTENTION SHOJID BE
C PAID TO MiESE FOIU@TS, ESPECIALLY THE USE OF THE DECIMAL POINT
C TO DISTINGUISH BETWEEN 'REAL' AND INTEGER DATA.
C
C
C
C NAME TYPE RANGE (ARAYS) RESmICTIONS
C - -_ _ _ _

C N INTEGER 0 <=N<= 10
C M INTEGER 0 <= M <= 4
C Q INTEGER 0 <= Q <= 4
C nstop INTER 0 <= nstop <= 99
C xsorce CHARACTER 'F' OR ''
C A(i,j) REAL i=,...,N 0 <= N <= 10
C
C B(i,j) REAL i1,...,N <= N <= 10
C j=,...,M <= M <= 4
C C(i,j) REAL i, ,Q <= Q <= 4
C j=I,...,N 0 <= N <= 10
C D(i,j) REAL i,.,Q 0 <= Q <= 4
C j, ,M <= M <= 4
C v(i) REAL i,..,N 0 <= N <= 10
C xs(i,j) REAL i, ,M 0 <=M<=
C j=0,...,nstcp O<--nstop <-99

264

C
C
C WHERE:
C
C N = AN INTGR VALUE THAT SPECIFIES THE NUMBER OF SYSTEM STATES,
C I.E., THE ORDER OF THE SYSTEM4.
C
C H = AN IN1TEGER VALUE THAT SPECIFIES THE NUMBER OF SYSTEM INPUTS.
C
C Q = AN INTEGER VALUE TIHAT SPECIFIES TIHE NUMBER OF SYSTEM WTPUS.
C
C nstop = AN fITER VALUE THAT SPECIFIES THE LARt TIME INDEX
C (m) FOR WHICH THE STATE EQUATIONS ARE 70 BE SOLVED.
C
C xsorce = A IARTER VALUE OF IFI OR S I DENOIING W ER ME INPUT
C SEQUENCE (S) xs(ij) ARE TO0 BE READ FROM4 THE IPUT FILE (F)
C OR TO0 BE MHUZATED (S) USING THE SUBROUTINE xgen. TIS
C LATTER OPION IS ATIRACTIVE WHEN Nistop IS A LARGE NU
C AND THE INPUT SEUENCE (S) xs(ij) CAN BE READILY DESRIBED
C BY ANALYTICAL EXPRESSIONS. IF xsorce = 'F' THE VALUES OF
C xs(ij) I , ; j=O,...,nstop A READ FRM THE
C INPUT FILE. IF xsorce = '5' THEN THE USER HAS ELECTED
C TO GEMERATE THE INPU SEUENCE(S) xs(1,j),...,xs(M,j) BY
C WRITING THE APFROPRIATE FORTRAN STATEMENS IN THE SUB-
C ROUTINE xgen. IF THIS METHOD OF INPUT DAT GENERATION
C IS SELECTED NO VALUES OF THE INPUT SEQUENCE SHOULD APPEAR
C IN THE INPUT FILE AND THE PF0GRAM MUST BE RECCMPILED
C BEFORE EXECUTION.
c
C A(ij) = AN N x N MATRIX OF REAL NUMBERS.
C
C B(i,j) =AN N x M MARIX OF REAL NUMBERS.
C
C C(ij)= A Q x N MATRIX OF REAL NUMBERS.
C
C D(ij)= A Q x M MATRIX OF REAL NUMBERS.
C
C v(i) = THE N x 1 INITIAL CONDITION VECTOR OF THE SYSTEM STATES.
C THE USER MUST PROVIDE THE VALUES OF THE STATES FOR ns=O,
C I.E., v(1),...,v(N). THESE VALUES ARE THE INITIAL
C CONDITIONS OF THE SYSTEM.
C
C xs(ij) = AN M x (nstcp+l) MATRIX OF REAL NUMBERS. THE SEQUENCE(S)
C xs(l,ns),...,xs(M,ns) ARE THE INPUTS TO THE SYSTEM AT
C SAMPLE ns.
C
C NOTE: THE INPUT FORMAT STATEMENTS OCCUR IN THE MAIN PROGRAM
C FOLlJWING THE CAPTION: ******** INPUT FORMAT ******.
C THE FOR4 OF THE INPUT DATA FILE IS:
C

265

C LINE # ENTRIES FORMAT NOTES
C
C 1 N,M,Q i2,tll,il,t21,il
C 2 nstcp,xsorce i2,tll,al
C NEXT NALINES A(i,j),i=1,...,N 6f10.0 READ BY ROM
C j=1,.. .
C NEXT N LINES B(i,j),i=l,...,N 4f10.0 READ BY ROWS
C j=l,...,m
C NEXT NC LINES C(ij),i=l,...,Q 6f10.0 READ BY ROS
C j=l,...,N
C NEXT Q LINES D(i,j),i=1,...,Q 4f10.0 READ BY ROWS
C j=l,.. . ,M
C NEXT Nv LINES v(i) i=l,...,N 6f10.0
C NEXT Nx LINES Xs(i,j),i=l,...,M 4flO.0 EACH LINE
C j=0,... ,ntop CRcRtE6S
C TO ONE VALUE
C OF ns.
C
C WHERE:
C
C NA = N IF N <= 6
C 2*N OTHERWISE.
C
C NC = Q IF N <= 6
C 2*Q OTHERWISE.
C
C Nv=0 IFN= 0,
C Nv = 1 IF 1 <= N <= 6,
C Nv=2 IFN> 6.
C
C NX = 0 IF xsorce = 'S' OR
C Nx = nstop + 1 IF xsorce = 'F'
C
C NOIE: THE FORMAT f10.0 USED FOR INPM DATA PERMIS THE DECIMAL
C POINT TO BE PLACED ANYWHERE IN THE FIELD OF 10 COUNS
C AND ALSO AUffWS MIE EXFONGETIAL FORMAT TO BE USED (EG.
C 3146.2 = 3.1462E+03).
C
C
C****************************** M ******************************

C
C
C THE INPYT DATA, SYSTEM STATES, AND THE WUI' SEQUNCE(S) ARE
C STORED IN TABJIAR FORM IN IHE FILE 'STATEQ. WTI. ADDITIONALLY,
C UP TO 9 SEQENCES CONSISTING OF THE EiNff AND wmTr SEWOENCES
C AND THE SYSTEM STATES ARE STORED IN THE FILE 'STATEQ.DAT' TO
C FACILITATE PWITING BY A SEPARATE, USER PROVIDED PROGRAM. NOTE
C THAT A MAXIM OF 9 SEQUENCES ARE WRITEN INTO TIS FILE. IF
C MORE THAN 9 SEENCES EXIST, ALL OF THE B4RM AND CITW SOENCES
C (xs() AND ys(0) WILL BE SIORED, HOWEVER SOME OF THE SYSEK STATE
C (vs(0) WILL NOT BE SIORED IN 'S.ATEQ.DAT'. THE FORMAT OF MHE DATA

266

C IN 'STAM.DAT' IS: e12.6, 2X, e12.6. THE FI=T ENTRY CORRESPONDS
C TO iE ORDINATE VAUE, AND THE SECOND ENTRY, MIE ABSCISSA VAlUE.
C ADDITIONAL HEADER INF0F4ATION IS WRIE INO 'STAT=.DAT' TO
C ALUM FOR CONTROL AND LABEING OF EACH PWr.
C
C
c***************************** EXAM4PL.E **************

c
c

C

C TIE INPUT PARAMETERS FOR THE SYSTEM DESCRIBED BELOW ARE STORED
C IN THE FILE 'S.ATE.ST'. THE GOAL IS TO READ THE INPUT VALUES
C FRO ThE INPUT FILE AND TO CAILULATE THE STATE VECIOR v AND M1E
C CORRESPONDING OUT VECIOR y FOR ns = 0 TO 3.
C
C GIVEN: N =2
C M=1
C :Q=I
C

C xl(ns) = 10.0*u(ns)
C xsorce = 'F' I.E., THE SEQUENCE xs(l,ns) IS READ
C FROM THE INPUT FILE.
C
C INITIAL CONDITIONS:
C
C vi(O) = 5.0
C v2(0) = -5.0
C
C SYSTEM OF EQ=I'ONS IN MATRIX FORK4:
C

C [vl(ns+1)] = [0.0 -1.0]*[vl(ns)] + [1.0]*[x1(ns)]
C [v2(ns+1)j (1.0 0.0] [v2(ns)] [0.0]c
C [yl(ns)] = [1.0 -1.0]*[vl(ns)] + [1.0]*[xl(ns)]
C [v2(ns)]
C

C THE INPUT FILE IS:
C
C 02 1 1
C 03 F
C 0.0 -1.0
C 1.0 0.0
C 1.0
C 0.0
C 1.0 -1.0
C 1.0
C 5.0 -5.0
C 10.0
C 10.0
C 10.0
C 10.0
C

~267

C THE RESULTING OUTPT FILE 'SATE). CUT' IS:
C

C INPUT PARAMETERS:
C

C INPUT DATA SOURCE FILE: STATEQ.TST
C THEN UROF STATES IS: N= 2
C THE NUMBER OF SYSTEM INPUTS IS: M = 1
C THE NUMBER OF SYSTEM OUTIJTS IS: Q= 1
C THE VALUE OF nstop IS: nstop= 3
C THE VALUE FOR xsorce IS: F
c
C THE MMZIX A(i,j) IS:
C

C .0000E+00 -.1000E+01
C .1000E+OI .0000E+OO

C THE MATRIX B(i,j) IS:
C

C .1000E+01
C .0000E+00
C
C THE MATRIX C(i,j) IS:
c
c .1000E+OI -.1000E+01
C
C THE MATRIX D(ij) IS:
c
C .1000E+OI

C THE INITIAL CONDITION OF THE STATE VECTOR IS:
C
C vl = .500000E+01
C v2 = -. 500000E+01
Cc
C OLTrIPV DATA:
C
C FOR ns = 0 THE STATE OF THE SYSTEM IS:
C THE VECTOR x is:
C x1 = .100000E+02
C THE VECIOR v is:
C vl = .500000E+01
C v2 = -.500000E+01
C THE VECTOR y is:
C yl = .200000E+02
C
C FOR ns = 1 THE STATE OF THE SYSTEM IS:
C THE VECTOR x is:
C x1 = .I00000E+02
C THE VECIOR v is:
C vl = .150000E+02
C v2 = .500000E+01

268

C THE VECIR y is:
C yl = .200000E+02
C
C FOR ns = 2 ITHE STATE OF THE SYSTE!4 IS:
C THE VECTOR x is:
C xl = .100000E+02
C THE vIECIR v is:
C v1 = .500000E+01
C v2 = .150000E+02
C THE VECIOR y is:
C yl = .000000E+00
C
C FOR ns = 3 THE STATE OF THE SYSTEM IS:
C THE VECIOR x is:
C xl = .100000E+02
C THE VECIOR v is:
C vi = -. 500000E+01
C v2 = .500000E+01
C THE VECTOR y is:
C yl = .000000E+00
C
C
C FOR ILJUSTRATIVE PURPOSES THE SAME INPUT SEQUENCE COULD HAVE BEEN
C GENkRATED BY CHANGING xsorce To '' AND USING SUBR)UME xgen
C TO GENERATE ME VALUES FOR xs(l,ns). THE APPROPRIATE FORIRAN
C STATEENTS ARE MITTE IN= xgen BUT 'trED OUT' FOR THIS
C EXAMPLE.
C
C
*************************** ~MAIN ****************************

real A(10,10), B(10,4), C(4,10), D(4,4), jj
real ys(4,0:99), vs(10,0:100), xs(4,0:99), v(10)
integer Q
character*1 mode, xsorce, infile*12

C P USER FOR MODE: BATCH OR TEST.

write (*, 1115)
read(*, 1117) mode
if((mode.eq. 'Y') .or. (mode.eq. 'y')) then

mode = I

269

Write (*, 1118)
read(*,1119) infi-le

el~se
infile = SrATEQ. INI
endif

C UNIT--1 DEFNE AS INPUT FILE. UNU=2 , 3 DEFINE AS WIU FIIS.

open (unit=1, file-infile, status= 'old' ,iostat--ierr, err--999)
open (unit=2, file-' SrATEQ. wr'I)
open (unit=-3 ,file- 'sTATQ. DAT')

C READ INPUT PARAMETTERS AND PEPXXM~ ERRR CHEM1~.

read(1,l0O1) N, M, Q
read(l,1002) i-stop, xsorce

if ((N. lt. 0) .or. (N. gt. 10)) then
wit(*,1124) IN', N
stop 'The allowed values for ''IN''I are: 0 <= N <= 10.'1
erdif

if ((M. lt.O0) . or. (M. gt. 4)) then
write(*,1124) 'M', M
stop ' The allowed values for ''IH"I are: 0 <-- M <-- 4.'
erdif

if((Q.lt.0) .or. (Q.gt.4)) then

stop 'The allowed values for 'IQ'' are: 0 <=- Q <=- 4.'

if((nstop.1t.0) .or. (nstop.gt.99)) then
write(*, 1127) nstop
stop 'The allowed values for nstop are: 0 < nstop <=- 99.'
erilif

if((xsorce.eq. 'F') .or. (xsorce.eq. 'f')) then
x-sorce = IF'
elseif((xsorce.eq. 'S') .or. (xsorce.eq. 's')) then

xsorce = 'S5'
else

write(*, 1128) xsorce
stop 'TMe allowed values for ''Ixsorce'I' are: ''IF'' or ''I5''.'
erdif

C FOR TEST MODE ECHO INPrT PARAMIS ON' MNTOR (UNIT=

if(mode.eq. 'Y') then
write(*, 1006)
write(*, 1007) infile
write(*,1008) N

270

write(*,1009) M
write(*, 1010) Q
write(*,1011) nstop

write(*, 1012) xsorce
if(N.eq.O) write(*,1131)
erdif

C WRITE INPUT PARAEMRE N,M,Q,nstop,xsorce IMo FILE: SJ2ATQ.WT.

write(2, 1006)
write(2, 1007) infile
write (2, 1008) N
write(2,1009) M
write (2, 1010) Q
write (2,1011) nstop
write(2, 1012) xsorce

C READ SYSTEM M~ATRICES AND WRIT THE M 0 FEE: STATE)Q. Wr

if(N.eq.0). then
write (2, 1131)

else
write(2,1110) 'A(i,j)'

do 30 i7-1, N
read(1,1003) (A(i,j) ,j=1,N)

write(2,1005) (A(i,j) ,j=l,N)
30 continue

write (2, 1110) 1 B(i, j)'
do 40 i=1l, N

read(1,1004) (B(i,j),j=1,M[)
write(2,1005) (B(i,j) ,j=1,M[)

40 continue

write (2, 1110) 1 C(i, j)'
do 50 i=-1, Q

read(1,1003) (C(i,j) ,j=1,N)
write(2,1005) (C(i,j) ,j=1,N)

50 continue
endif

write (2, 1110) 1'D(i, j)
do 54 i=1l, Q

read(1,1004) (D(i,j) ,j=1,M)
write(2,1005) (D(i,j) ,j=1,M)

54 continue

C READ THE INITIAL CONDITION VECI'OR v() AND WRIE TH~E VALUES
C INTO FEIE: STATEQ.CUT.

271

if (N. gt. 0) then
read(l,1003) (v(i) ,i7-l,N)
write (2,1123)
do64 i71, N

write(2,1133) 'v' 1 i, v(i)
vs (i,O0) = v (i)

64 continue

C FOR TEST MODE WRITE THE VECIOR v () CNTO TEHE DENTIMR.

if(xiode.eq. 'Y') then
write (*, *)
pause'I > T1ype <R to continue. <
write(*, 1123)
do 65 i--1, N

write(*,1133) 'v', i, v(i)
65 continue

erxiif
erKilf

C FOR xsorce = 'F' READ THE ARRAY xs(i,j) FROM TH~E INPUT FILE.
C FOR xsorce = 'S' CALL 'xgen' TO0 GENERATE THE ARRAY xs(i,j).

if(xsorce.eq. 'F') then
do 70 j=O, nstop

read (1, 1004) (xs (i, j) , i-1, M)
70 continue

else
call xgen (xs, M, nstop)
erdif

C COFUTE ITERATIVE SOLUTION TO0 THE SYSTEM OF EQUATIONS.

call itrate (N, M, Q,nstop,A, BC, D, xs, vs, ys)

C FOR EACH VALUE OF xis WRITE THE VALUES OF xs, vs, ys(TO0 1II

C OrUTPU FILE: STArE)Q. OU.

write (2, 1129)

do 100 ris=0, nstop
write(2,1130) xis
wrJite(2,1132) 'x'
do 101 i7-l, M

write(2,1133) 'x', i, xs(i,ns)

101 continue

if(N.gt.0) then
write(2,1132) 1v'

do 102 i=1, N
write(2,1133) 'v', i, vs(i,ns)

272

102 continue
erilif

write(2,1132) 'y'

*do103 i-1, Q
write(2,1133) 'y', i, ys(i,ns)

103 continue
*100 continue

C WRIE TH1E SEQUENCES xs, vs, ys TNIO HE FILIE: STATEQ. DAT.

ntmplts = N + M + Q
if (nuiTlts.gt. 9) then

numplts = 9

erdif

write(3, 2000) nuuiplts

do 55 i7=1, M
write(3, 2001) nstopl1
write(3,2002) 'INPFUT SEQUENCE x', char(48+i), I (ns)'
write(3,*) 'SAMPI.E # (ns)'
write(3,2003) 'x', char(48+i), I (ns)'
do 56 ns=0, nstop

ji = l's
write(3,2010) jj, xs(i,ns)

56 continue
55 continue

do 57 i=1, N
write (3,2001) nstop+1l
write(3,2002) 'STATE SEQUENCE VI, char(48+i), I (ns)'
write(3,*) 'SAMPLE # (ris) I
write(3,2003) 'v', char(48+i), I (ns)'
do 58 ns=0O, nstop

ii = n
write(3,2010) jj, vs(i,ns)

58 continue
57 continue

do 59 i:=1, Q
write (3,2001) nstop4-1
write(3,2002) 'OUTPU1T SEQUENCE y', char(48+i), I (ns)'
write(3,*) 'SAIMPTIE # (ns)'
w-rite(3,2003) 'yl, char(48+i), I (ns)'
do 60 ns-=0, nstop

ii = l's
write(3,2010) jj, ys(i,nis)

60 continue
59 continue

273

999 close (unit=-1)
close (unit=-2)
close (unit--3)

if(ierr.gt.0) then
write(*, U16) ierr
endif

C******** INPUT FOR4A

1001 forrmat(i2,t1l,il,t21,il)
1002 format(i2,tll,al)
1003 formnat (6(f1. 0))
1004 flormat(4(flO.0))

l0OL; format(6(2X,elO.4))
1006 format (t16, //////,I INPU~T PAIAMErERS:',/
1007 format (t4, IINPUT DATA SOUJRCE FILE: I',a12)
1008 forhat(t4,THE NUMBER OF STATES IS: N = iJ2)
1009 fiormat(t4, 'IHE NUMBER OF SYSTEM INPTS IS: M='il
1010 formiat (t4, M~E NUMBER OF SYSTEM4 OUTPUTS IS: Q ='ii)
loll formnat (t4, UMH VALUE OF nstop IS: nstop = I, i2)
1012 format (t4, UM VALUJE FOR xsorce IS: 'al,/
1110 format (///, t4,I ME MAI1 I ',a6,'I IS:',/)
1115 Oformat (ix, 'Do YOXJ WISH To mJN 7MI FROI INTES'

1' MODE ? (Y/N) <CR> : ',\,)
1116 Oformat (///, lx, I ERR)R OPENING INPUT FILE, P)RAM TER~4IjTE.'

1117 fomat (al)
1118 Oformat (///l, lx, 'TYPE TIHE NME OF YOMJ DATA FILE FOLIJwED1',

1' BY <CR>. ',/,'I IF YOU DESIRE TO0 MAKE A TEST RUN USING THE'I ,
2' SAMPLE DATA ATREADY STORED',,/,' IN THE FILE: STATEQ.'1ST',.
3 1 TYPE: STATE2.TST <CR>',/,' FIIEAME:'\)

1119 forniala2)
1121 Ofonnat (//,'I TABULAR OUZTPUT7 DATA IS STORED IN FILE: STATI. T.'

1/,'I PWrIG DAMA IS STORED IN FILE: STATEQ. DAT.'I)
1123 foniat (//, t4, 'THE INITIAL CNDITION OF TiH ST'ATE VECTOR IS, ,
1124 Ofonrlat(//,' The value of 'al, I is 'i2,. This value is not

1 allowed.'1)
1127 Oforxnat(//, I The value of nstop is ,i2,. This value is niot

1 allowed.'1)
1128 Oformat(//,' The value of xsorce is ',a1,'. This value is not

1 allowed.'1)
1129 format(//,t16,' OUITPUT DATA:'1)
1130 fornat(//,t2,'FCR ns = ,iJ2,1 THE STATE OF THE SYSTEM4 IS:')
1131 format (/,' IEHIS SYSTEM IS NoN-P.ECURSIVE!!)
1132 format(t4,1HE VECTOR ',al,' is:')
1133 format (t6, al, il,' ='e12. 6)
2000 format (il)
2001 format(i3)

274

2002 format(a17,al,a5)
2003 format(al,al,a5)
2010 foniiat(e12.6,2x,e12.6)

C SUBRDUl~IE: itrate

C P~URPOSE: TIHIS SUE)Rfl4E CttMFUES TIHE ITERATIVE SOIDTION TO
C TIHE DISCRErE, SrAI'E Mk=RI SYS=F! OF EQUATIONS.
C TIHE INPLYIS TO THIS1 SUEF40TINE ARE TH1E DIMENSIONS
C N, M, Q, TIHE PARAIMER. nstop, AND TLHE 2-DIMENSIONAL
C ARRAYS A, B, C, D, xs, AND vs. FOR EACH{ VAIDE OF ns
C FROM ns = 0 TO ns = nstop TH1E STATE OF TIHE SYSTE4 vs
C IS CCMPUME AS IS THiE CO)RRWSFNDflG OUTPUT ARRAY ys.

subroutine itrate(N,M,Q,nstop,A,B,C,D,xs,vs,ys)
integer Q
real A(10,10), B(10,4), C(4,10), D(4,4)
real xs(4,0:99), vs(10,0:100), ys(4,0:99)

do 1 ns=0, nstop

C FOR ns = 0 TO nstop: CtMPUTE THiE SOIJJTON
C TO THE BQIUATION: vs(ns+1) = A*vs(ns) + B*xs(ns).

do 2 i=-1, N
xi = 0.0
Vs(i,nls+1) = 0.0
do 3 k--l, M

xi = xi + B(i,k)*xs(k,ns)
3 continue

do 4 j=1, N
vs(i,rs+l) = vs(i,isel) + A(i,j)*vs(j,ns)

4 continue
vs(i,ns+l) = vs(i,ns+l) + xi

2 continue

C CCMARYIE TH{E SOlUrION TO THE EQUATION: ys (ns) =C*vs (n) + D*xs (ns).

do 5 1=1, Q
ys (1, ns) = 0. 0
Ai = 0. 0
do 6 k=1l, M

275

xi = xi + D(1,k)*xs(k, ns)
6 ccntinue

do 7 j=l, N
ys(l,ns) = ys(l,ns) + C(l,j)*vs(j,ns)

7 continue
ys(l,ns) = ys(l,ns) + xi

5 continue

1 continue

returnend

C SUBRUINE: xgen

C PURPOSE: THIS SUBYRUINE ALLOS THE USER TO GENERATE VALUES FOR
C MIE 2-DIMENSIONAL ARRAY xs(i,j). IF xsorce = 'S' ME
C MAIN PROGRAM WILL CALL THIS SUBROUINE. IF xsorce = 'F'
C THIS SUBRUTNE WILL NOT BE CALLED BY THE MAIN PGRAM.

subroutine xgen (xs,M, nstop)

real xs(4,0:99)

pi = 4.0*atan(l.0)

c*** ***

C DEVELOP THE AILGRITHM FOR GENERATING VALUES OF xs(i,j) IN THIS
C SPACE. THE S DIENS TYPED IN MUST FOLLOW STANDARD FORTRAN 77
C RULES AND MAY USE FORTRAN 77 INTRINSIC FNCTIONS SUCH AS: SIN O,
C COS() ,... NOTE TIM THE ROW INEX i DENOTES THE INPUT SEQUENCE
C NUMBER 1 <= i <= M, AND THE INDEX j DEN TES THE VALUE FOR ns
C 0 <= ns <= nstop. AN EXAMPLE OF AN AIORITHM GEERATING VALUES
C FOR THE SQUENCE xs(l,ns) IS:
C

D C

C*** EXAMPLE ***
C do 88 ns=0, nstop
C xs(l,ns) = 10.0
C 88 continue

C********* **

return
end

276

C PRSTDAI. mD VERSION: 2/03/88
C
C
C PURPOSE: THIS PROGRAM IS DESIGNED TO CREATE UP MO NINE TWO-
C DMIONAL (2-D) PLOTS BY READING DA A FR AN
C FIL AND ' ThE DAM ON THE MON= SCREEN THE
C P)GRAM CONSISTS OF A MAIN PROGRAM AND THE SUERnT1S
C scale AND gridd. THE MAIN PROGRAM REAS THE DAM FR14 THE
C INEUT FILE, ANDaa'ES THE PMT (S) BY MAKING CALLS TO
C THE GRAEMATICS GRAIICS LIARY (NOTE 1). SUB7TINE
C scale IS CALLED BY THE MAIN PROGRAM TO SCALE UE DATA SO
C AS TO OPTIMALLY FILL Tf1E SCREW WITH EAM{ PLOT. SUE0MINE
C gridd IS CALLED BY MlE MAIN PROGRAM IF THE USER ELECTS TO
C HAVE A GRID OVERLAY THE PLOT. TME USER HAS UE OPTION OF
C P0RFMING A TRIAL RU'N BY PWITTING THE DATA PRES ORED IN
C THE FILE 'PLDTDAT.TST'. IT IS RECOMENDED =1AT FIRST-TIME
C USERS MAKE A TRIAL RON BY SPECIFYING HE INPUT FILE
C 'PLDIDAT.TST' WH PROMPTED FOR THE NAME OF THE INPUT
C FILE. THE SPECIFIC HARD E RE0IF TS NECESSARY TO RJN
C THE PROGRAM ARE OU=NED BELOW. ADDITIONALLY, M1E INPUT
C FORM R 4MIS ARE PRESENTE AND A SAMPLE INPUT FILE
C LISTING IS INCLUDED.
C
C NOTE 1. COPYRIGHT 1984, MICR0X3MPATIBLES INC., SILVER SPRINGS, MD.
C
C

HARDWARE REQIREMENTS

C
C
C T1HIS PROGRAM WAS WRITTEN FOR PERSONAL COMPUTERS OUTFITTED WITH A
C COLOR GRAPHCS ADAPTER (CGA) CARD. UE MONITOR SCREEN IS ASSUMED
C TO BE 640 X 200 PIXELS. FOR HARDCOPY PRIN1TS OF THE PLOTS THE
C POGRAM WILL DRIVE A DOT MATRIX PRINTER IF INSTAILED. FOR
C COMUTERS OU'TFITTED WITH OTHER THAN A C3A CARD THE PROGRAM MAY NOT
C OPERATE. FOR MACHES THAT HAVE AN EGA CARD THE PROGRAMS WILL NOT
C PROJCE A HARDODPY PRINTOUT OF THE PLOTS. To OVERCOE THIS
C LJMITATION, USERS SHOULD TRY EXECUTING THE 'PRINT SCREE' COMMAND.
C
C
C****************************** INPUT

c
c
C UPON EXECUTION OF THE PROGRM, THE USER IS PROMPTED FOR THE NAME
C OF iE INPUT FILE. THE INPUT FOR4AT STATIMENTS OCCUR IN THE MAIN~C PROGRAM FOLLWI THE CA=fON: ******** 121 FORMAW ****
C THE FORK OF THE INU DATA FILE IS:
C

277

C INE # ERIES FORM RESRICTIONS
C
C 1 nimpits ii 1 <= numpits <= 9
C 2 numpts i3 2 <= pts <= 999
C 3 title a40
C 4 xlabl a14
C 5 ylabl a14
C 6 ... x0), y() fl2.0,2X,fl2.0 NOTE 2
C NOTE 1
C
C WHERE:
C
C mnplts = AN IIEGER VALUE UIAT SPECIFIES THE NUMBER OF PLOTS TO
C BE CREATED BY THE PROGRAM. FOR EACh PLOT 1, ... , numplts
C MRE INP DATA SPECIFIED BELOW MUST OCCUR IN MDE INPY
C FILE.
C
C numpts = AN INTEGER VAUJE THAT SPECIFIES THE NUMBER OF POINTS TO
C BE READ FRCM ThE INPUT FILE, FOR A GIVEN PLOT, AND
C PIrTED.
C
C title = A CHARACTER STRING CNSLSTING OF UP TO 40 CHARACTERS.
C THIS STRING IS PLACED ABOVE THE PLOT.
C
C xlabl = A CHARACTER STRING CONSIS7IG OF UP TO 14 CIARACTE.
C THIS STRING IS PLACED BENEATH THE X-AXIS.
C
C ylabl = A a-1ARACTER STRING CONSISTING OF UP TO 14 ChARACTERS.
C 'HIS STRING IS PLACED ADJACENT TO, THE Y-AXIS.
C
C x() y() = LINES 6... 6+nunpts MUST EACH CONTAIN A PAIR OF REAL
C NUMBERS THAT COMPRISE THE ORDINATE x() AND ABSCISSA y()
C VALUES DEFINING A SINGLE POINT TO BE PwI'ED.
C
C NOTE 1. THE DATA REqUIRED FOR LINES 2 ... 6+numpts IS REPEATED
C FOR EACH PLOT (1... nmplts) TO BE CREATED BY THE PROGRAM.
C
C NOTE 2. THE FORMAT f12.0 USED FOR INP7T DATA PERU4TS ThE DECIMAL
C POINT TO BE PLACED ANYWHERE IN THE FIELD OF 12 COLUMNS
C AND ALSO ALLOWS THE EXFCnEIAL FORMAT TO BE USED (E.G.,
C 3146.2 = 3.1462E+03).
C
C
***************************** EXAMPLE *******************************

C
C
C PRINTED BELOW IS A LISTING OF ONE OF THE MEO EXAMPLES INCLUDED IN
C THE INPUT FILE 'PIDTDAT.TST'. THE ENTRIES O1 EACH LINE SHOJLD BE
C CXMPARED TO THE FORMAT RBQJIREMERS LISTED ABOVE.
C
C

278

C 1
C 005
C title (UP TO 40 WM~) IS PflhDEI HERE
C xlabl HERE
C ylabl HE
C 0.0 0.0
C 1.0 1.0
C 2.0 2.0
C 3.0 3.0
C 4.0 4.0
C
C

C*****************~~ MAIN PROGRM

$S'I0RAGE: 2

character copy*1, yscal*3, xlabl*14, ylabl*14, scal*6
character title*40, infile* 12, plot*1, ,oc*1, yy*1, grid*.
real x(999), y(999), dum(4,999)
integer tmode, gnxde

C DEFINE SCEEN SIZE: 640 x 200 PIXELS

griode = 6
tucode = 2

C DEFAULT PLO] TYPE: SOLID BLACK LINM, POINTIS CNNECIED BY A LINE.

ndots = 0
icolor = 3
kJlrsym = 3

C ENABLE MINOR TIC MARKS ON AXES.
C ENABLE MAJOR TIC MRW AND LABEL TO0 AN ACCURACY OF 0. 01.

minorx = 1
minory = 1
label = -1
rnlec = 2

C ENABLE PLOT? AUTO-SCALING.
C y/x RATIO OF PLOT =1. 0.
C PLOT? ASPECT RATIO = 1.2.

io = 0
yx = 1.0
aspct = 1.2

279

C DEFINE CHARACIER STRNG CONSTANTS~.

scal = 'x 10**'
xx= Ix'

yy = y'

C CLEAR SazE'M

call qclear(0,7)

C OPEN INPUT FILE AND READ UEM VALUE ntmplts.

write(*, 111)
read(*, 109) infile

open (unit= l, file=infile, status=old', iostat=ierr, err=999)
read(1, 100) numplts

C P4PT USER FOR DESIRED OPTIONS.

do 5 i=l, numplts
data x/999*0.0/, y/999*0.0/
write(*, 107)
read(*, 101) copy
write (*, 112)
read(*,101) grid
write(*, 108)
read(*,l01) plot

C READ HEADER DAMA FRO INPUT FILE.

read(1, 102) numpts
read(1, 104) title "
read(1,105) xlabl
read(1, 105) ylabl

C FOR PLOIS OF 25 POINTS OR LESS, PIITING SYMBOL = I

if(nunpts.le.25) then
isymbol = 43
itype = 0

else
isymbol = -2itype = 1

endif
C SCALE THE INPUT DATA.

-" . = 3.0e+38Ixmax = -3.0e+38
ymin = 3.0e+38
ymax = -3.0e+38

280

do 10 kc-1, numipts
read(1,106) x(k), y(k)
xiiax = max(x(k) ,xrnax)
xmin = min(x(k) ,xnun)
ymax = max(y(k) ,ymax)
ymin = min(y(k) ,ymin)

10 continue

if(xmax.eq.xmin) then
write (*, *) 'Execution halted.
write (*, *) 'The increment of the ordinate values =0.0.'

stop 'Check the ordinate values in the input file.'
endif

if ((ymax. eq. 0. 0) .and. (yxin. eq. 0.0)) then
write (,*'For the current plot, the maximu= andi minimum'
write (,*'abscissa values are: ymax = ymin = 0. 0.'
write (*, *) 'Data ignored ... computing next plot.'
goto 5

endif

call scale(auin,xnax, ixscal,,oc)
call scale (ymin, ymax, jyscal ,yy)
scalx = real (ixscal)
scaly = real (iyscal)

xm~ajor = abs(xmax-xmin)/5.0 - 0.000001
ymajor = abs(yniax-ymin)/5.0 - 0.000001

do 11 k--1, numipts
x(k) = x(k)/(l0.0**ixscal)
y(k) = y(k)/(10.0**iyscal)

11 continue

C IBEGD GRAPHiICS SECrION.

call qsmode (gmode)
call qlot (160, 600, 30, 180, nin, xmax,yinymax,x>min ,ymin ,io, yx
& aspct)
call qsetup (ndots, icolor, isymbol , klrsym)
call qptxt(40,title,icolor,29,24)

call qxaxis (min,xmaax, xnajor,miinorx,label,ndec)
call qptxt(14,xlabl,icolor,40,0)
call qptxt(6,scal,icolor,68,1)
call qqnput(576,8,scalx,0)

call ayaxis (ymin, yiax, ymaj or, minory, label, ndec)
call qptxt(14,ylabl,icolor,0,12)
call qptxt(6,scal,icolor,0,22)
call cqnput(28,l76,scaly,0)

281

AD-RI94 656 A COMPUTER PROGRAM PACKAGE FOR INTRODUCTORY 4/4
ONE-DIMENSIONAL DIGITAL SIGNAL PROCESSING APPLICATIONS
(U) NAVAL POSTGRADUATE SCHOOL MONTEREY CA F E HUDIK

17: LSSIFIED MAE8
F/G 12/5 NL

li 13-6 .
96,

U-

E1.25 1.4. L W 16

C OVERIAY GRID ONTO IHE PLOT IF SPECIFIED.

if((grid.eq. 'Y') .or. (grid.eq. 'y')) then
call gridd()endif

C PI0T THE POINTS OF THE ARAYS.

call qtabl (itype, numpts, x, y)

C PRINT HARDOPY IF SPECIFIED.

if((copy.eq. 'y') .or. (copy.eq. 'Y')) then
call cpecrn

endif

call qinkey (iextend, key)
call qsmode (tmode)

5 continue

write(*,*) 'Plotting completed, returning to DoS.'

999 close (unit=--l)
if(ierr.gt.0) then

write(*,l10) infile, ierr

C******** INPUT FOIMAT ********

100 format (il)
102 format(i3)
104 format(a40)
105 format(a14)
106 format(f12.0,2x,f12.0)

101 fornat(al)
107 Oformat(lx, 'Do you want a hardcopy of the plot to be',

1' generated next ? Y/N <CR>',\)
108 Oformat (lx, 'To begin the plotting or to exit fran the',

1' plotting enter <C>.',\)
109 format(a12)
110 format(Ix,'Error opening file: ',a12,' Error code = ',i4)
111 Oformat (/////, 1x,TYPE M THE NAME OF YOUR DATA FILE FOLUCED',

1' BY <C>. ',/,' IF YOU DESIRE TO MAKE A TEST RUN USING THE',
2' SAMPLE DATA ALREADY STORED',/,' IN THE FILE: PIDTDAT.TST,
3' TYPE: PLOTDAT.TST <C>',/,' FILENAME:',\,)

112 format(lx,'Do you want a grid to overlay the plot ? Y/N <CR>',\) V

end

282

C SUBROIINE: scale

C PUROE: rnM~ SUERJI'flNE FINDS~ THE LARGET flNrEGER POER OF TER
C OCCURRING IN ETHER valmin OR valmax. M1E RESULTING
C EXPONENT' IS RE'IUPNED TO0 TH~E CAILING, PROGRAM IN iscal.
C TH1E SURJTINE AISO SCALES valmin AND valmax BEFORE
C PE 1NJNING THESE VALUES TO0 THE NUNfl PROGRAM.

subroutine scale (valudn, valrrax, iscal, c)
chiaracter c*1

iscal = 0
argi = 0. 0
arg2 = 0. 0

C FIND THE LARGEST INIE3ER POWER OF 10 IN THE SDENCE.

if(valmx.ne.O.O) then
argi = loglo (abs (valmrax))
erdiif

if (valmii. ne. 0. 0) then
arg2 = loglO (abs (valmin))
erdif

iscal inrt(mx(arql,arg2))

C SCALE THE MAXI"U AND MMIIM VALUES OF THE SEQUJENCE.

valmin = valmin/(10.Q**iscal)
valinax = valmax/(10.0**iscal)

C CREATE A BLFFER SPACE FOR TH1E ABSCISSA VALUES OF THE PWTr.

if(c.eq.'y') then

if ((valmin. lt. 0.0) .and. (valnax. lt. 0. 0) valinax = 0. 0
if ((valinin. gt. 0. 0) .and. (valmax. gt. 0. 0) valmin = 0. 0
teqnpnin = anint (-1. 0+valmin)
tenpnax = anint (1. 0+valmax)

if(valmin.ne.0.0) then
2 if (abs(valmin) - 0.1*abs(terimin)) 3,4,4
3 tempmin = 1*tenlpuin

goto 2
4 valmin = valmin + .1*teqmpn

erdif

if (valimax. ne. 0. 0) then
5 if(abs(valmax) - 0.1*abs(tepm1ax)) 6,7,7

283

6 teqpuax = .1*tempax

go to 5
7 valmax = valmax + .l*tempmaxendif

endif

return
end

C SUBROU INE: gridd

C PURPOSE: THIS SUBRTINE IS CALLED BY MIHE MAIN PFCXRAM TO CREATE
C A GRID OVERLAY CONSISTING OF BOTH HORIZONTAL AND VERTICAL
C DASHED LINES EXTENDING FROM THE MAJOR TIC MARKS OF THE
C AXES.

subroutine gridd()

C CEATE HORIZONTAL DASHED LINES AT THE MAJOR TIC MARKS OF TH-E PLOT.

do 500 i=1, 5
ii = 29 + 30*i
call qdash(5,160,ii,600,ii,3)

500 continue

C CREATE VERTICAL DASHED LINES AT ME MAIJOR TIC MARKS OF THE PLOT.

do 501 j=1, 5
jj = 159 + 88*j
call qdash(7,jj,30,jj,179,3)

501 continue

return
end

284

LIST OF REFERENCES

1. Strum, R. D. and Kirk, D. E., First Principles of
Discrete Systems and Digital Signal Processing,
Addison-Wesley Publishing Co., 1988.

2. Etter, D. M., Problem Solving with Structured Fortran
7_7, Benjamin/Cummings Publishing Co., Inc., 1984.

3. Gerald, C. F. and Wheatley, P. 0., ADplied Numerical
Analysis, 3d ed., p.20, Addison-Wesley Publishing Co.,
1984.

285

Bibliography

Brigham, E. 0., The Fast Fourier Transform, Prentice-Hall
Inc., 1974.

Dudgeon, D. E. and Mersereau, R. M., Multidimensional
Digital Signal Processing, Prentice-Hall Inc., 1984.

Gonzalez, R. C. and Wintz, P., Digital Image Processing,
Addison-Wesley Publishing Co., 1977.

Kirk, D. E., Various Fortran algorithms for the solution of
Digital Signal Processing problems., 1987.

286

INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Technical Information Center 2
Cameron Station
Alexandria, Virginia 22304-6145

2. Library, Code 0142 2
Naval Postgraduate School
Monterey, California 93943-5002

3. Professor D. E. Kirk, Code 62Ki 5
Naval Postgraduate School
Monterey, California 9-3943-5000

4. Professor R. D. Strum, Code 62St 3
Naval Postgraduate School
Monterey, California 93943-5000

5. Professor C. W. Therrien, Code 62Ti 1
Naval Postgraduate School
Monterey, California 93943-5000

6. Lt. J. V. England, Code 62Eg 1
Naval Postgraduate School
Monterey, California 93943-5000

7. Strategic Systems Project Office 1
Atten: Fred Wimberly, SP 27331
617 21st. Street South
Arlington, Virginia 22202

8. Professor R. Santoro 1
Department of Electrical Engineering
U. S. Naval Academy
Annapolis, Maryland 21412

9. Lt. F. E. Hudik 1
17103 Lake Point Drive S.E.
Yelm, Washington 98597

287

-a-

